
Aslan Y Tsivadze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/287657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supramolecular Chemistry of Metalloporphyrins. Chemical Reviews, 2009, 109, 1659-1713.	47.7	642
2	Functional supramolecular systems: design and applications. Russian Chemical Reviews, 2021, 90, 895-1107.	6.5	93
3	Macroheterocyclic Compounds - a Key Building Block in New Functional Materials and Molecular Devices. Macroheterocycles, 2020, 13, 311-467.	0.5	91
4	Methodological Survey of Simplified TD-DFT Methods for Fast and Accurate Interpretation of UV–Vis–NIR Spectra of Phthalocyanines. ACS Omega, 2019, 4, 7265-7284.	3.5	86
5	Functional molecular switches involving tetrapyrrolic macrocycles. Coordination Chemistry Reviews, 2019, 387, 325-347.	18.8	71
6	First Example of Nonlinear Optical Materials Based on Nanoconjugates of Sandwich Phthalocyanines with Quantum Dots. Chemistry - A European Journal, 2017, 23, 2820-2830.	3.3	70
7	Unusual Formation of a Stable 2D Copper Porphyrin Network. Inorganic Chemistry, 2013, 52, 999-1008.	4.0	60
8	Synthesis of <i>meso</i> -Polyphosphorylporphyrins and Example of Self-Assembling. Organic Letters, 2009, 11, 3842-3845.	4.6	49
9	Electrochemical and Spectroelectrochemical Studies of Diphosphorylated Metalloporphyrins. Generation of a Phlorin Anion Product. Inorganic Chemistry, 2015, 54, 3501-3512.	4.0	46
10	A Molecular Chameleon: Reversible pH- and Cation-Induced Control of the Optical Properties of Phthalocyanine-Based Complexes in the Visible and Near-Infrared Spectral Ranges. Inorganic Chemistry, 2016, 55, 2450-2459.	4.0	46
11	Diphthalocyaninatolanthanum as a New Phthalocyaninatoâ€Dianion Donor for the Synthesis of Heteroleptic Tripleâ€Decker Rare Earth Element Crownâ€Phthalocyaninato Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 4800-4807.	2.0	42
12	Electrochemical and spectroscopic studies of poly(diethoxyphosphoryl)porphyrins. Journal of Electroanalytical Chemistry, 2011, 656, 61-71.	3.8	40
13	Orientation-Induced Redox Isomerism in Planar Supramolecular Systems. Journal of Physical Chemistry C, 2014, 118, 4250-4258.	3.1	38
14	Redox-controlled multistability of double-decker cerium tetra-(15-crown-5)-phthalocyaninate ultrathin films. Journal of Porphyrins and Phthalocyanines, 2008, 12, 1154-1162.	0.8	37
15	Synthesis, spectral properties and supramolecular dimerisation of heteroleptic triple-decker phthalocyaninato complexes with one outer crown-substituted ligand. Inorganica Chimica Acta, 2009, 362, 11-18.	2.4	37
16	Supramolecular Assembly of Organophosphonate Diesters Using Paddle-Wheel Complexes: First Examples in Porphyrin Series. Crystal Growth and Design, 2014, 14, 5976-5984.	3.0	36
17	Optical limiters with improved performance based on nanoconjugates of thiol substituted phthalocyanine with CdSe quantum dots and Ag nanoparticles. Dalton Transactions, 2017, 46, 16190-16198.	3.3	36
18	Supramolecular metal complex systems based on crown-substituted tetrapyrroles. Russian Chemical Reviews, 2004, 73, 5-23.	6.5	35

#	Article	IF	CITATIONS
19	NMRâ€based analysis of structure of heteroleptic tripleâ€decker (phthalocyaninato) (porphyrinato) lanthanides in solutions. Magnetic Resonance in Chemistry, 2010, 48, 505-515.	1.9	35
20	The crucial role of self-assembly in nonlinear optical properties of polymeric composites based on crown-substituted ruthenium phthalocyaninate. Journal of Materials Chemistry C, 2015, 3, 6692-6700.	5.5	35
21	Solvent-induced supramolecular assemblies of crown-substituted ruthenium phthalocyaninate: morphology of assemblies and non-linear optical properties. Journal of Porphyrins and Phthalocyanines, 2009, 13, 92-98.	0.8	34
22	On the synthesis of functionalized porphyrins and porphyrin conjugates via β-aminoporphyrins. New Journal of Chemistry, 2016, 40, 5758-5774.	2.8	34
23	Novel approaches to model-free analysis of lanthanide-induced shifts, targeted to the investigation of contact term behavior. Dalton Transactions, 2011, 40, 7165.	3.3	33
24	Heterocycle-appended porphyrins: synthesis and challenges. Coordination Chemistry Reviews, 2020, 407, 213108.	18.8	33
25	Phosphorus(V) Porphyrin-Based Molecular Turnstiles. Inorganic Chemistry, 2016, 55, 10774-10782.	4.0	32
26	Tuning photochemical properties of phosphorus(<scp>v</scp>) porphyrin photosensitizers. Chemical Communications, 2017, 53, 9918-9921.	4.1	32
27	Synthesis and Selfâ€Organization of Zinc β <i>â€</i> (Dialkoxyphosphoryl)porphyrins in the Solid State and in Solution. Chemistry - A European Journal, 2012, 18, 15092-15104.	3.3	31
28	Determination of the Structural Parameters of Heteronuclear (Phthalocyaninato)bis(crownphthalocyaninato)lanthanide(III) Triple-Deckers in Solution by Simultaneous Analysis of NMR and Single-Crystal X-ray Data. Inorganic Chemistry, 2016, 55, 9258-9269.	4.0	31
29	Synthesis and structure of the (R4Pc)Ru(TED)2 complex, where R4Pc2â^' is the tetra-15-crown-5-phthalocyaninate dianion and TED is triethylenediamine. Mendeleev Communications, 2004, 14, 193-194.	1.6	28
30	Insights into the crystal packing of phosphorylporphyrins based on the topology of their intermolecular interaction energies. CrystEngComm, 2014, 16, 10428-10438.	2.6	28
31	Highly Protonâ€Conductive Zinc Metalâ€Organic Framework Based On Nickel(II) Porphyrinylphosphonate. Chemistry - A European Journal, 2019, 25, 10552-10556.	3.3	28
32	Synthesis and spectral properties of ruthenium(II) complexes with tetra-15-crown-5-phthalocyanine and N-donor ligands. Journal of Porphyrins and Phthalocyanines, 2003, 07, 795-800.	0.8	27
33	Improvement of nonlinear optical properties of phthalocyanine bearing diethyleneglycole chains: Influence of symmetry lowering vs. heavy atom effect. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1296-1305.	0.8	25
34	Cation-Induced Dimerization of Crown-Substituted Phthalocyanines by Complexation with Rubidium Nicotinate As Revealed by X-ray Structural Data. Inorganic Chemistry, 2018, 57, 82-85.	4.0	25
35	Efficient scrambling-free synthesis of heteroleptic terbium triple-decker (porphyrinato)(crown-phthalocyaninates). Dalton Transactions, 2012, 41, 9672.	3.3	24
36	Synthesis, spectral properties, cation-induced dimerization and photochemical stability of tetra-(15-crown-5)-phthalocyaninato indium(III). Journal of Porphyrins and Phthalocyanines, 2013, 17, 564-572.	0.8	23

#	Article	IF	CITATIONS
37	Selective one-step synthesis of triple-decker (porphyrinato)(phthalocyaninato) early lanthanides: the balance of concurrent processes. Dalton Transactions, 2011, 40, 11539.	3.3	22
38	Gallium(III) and Indium(III) Complexes with <i>meso</i> -Monophosphorylated Porphyrins: Synthesis and Structure. A First Example of Dimers Formed by the Self-Assembly of <i>meso</i> -Porphyrinylphosphonic Acid Monoester. Inorganic Chemistry, 2017, 56, 3055-3070.	4.0	22
39	Unexpected formation of a 1¼-carbido diruthenium(<scp>iv</scp>) complex during the metalation of phthalocyanine with Ru ₃ (CO) ₁₂ and its catalytic activity in carbene transfer reactions. Dalton Transactions, 2017, 46, 15651-15655.	3.3	22
40	Stability constants of complexes of Zn2+, Cd2+, and Hg2+ with organic ligands: QSPR consensus modeling and design of new metal binders. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 72, 309-321.	1.6	19
41	QSPR ensemble modelling of the 1:1 and 1:2 complexation of Co2+, Ni2+, and Cu2+ with organic ligands: relationships between stability constants. Journal of Computer-Aided Molecular Design, 2014, 28, 549-564.	2.9	19
42	Revisiting 2,3-diaminoporphyrins: key synthons for heterocycle-appended porphyrins. Dyes and Pigments, 2018, 156, 243-249.	3.7	19
43	The features of cerium coordination chemistry in the complexes with tetra-15-crown-5-phthalocyanine. Journal of Porphyrins and Phthalocyanines, 2006, 10, 931-936.	0.8	18
44	Behavior of aluminum(III)-tetra-15-crown-5-phthalocyaninates in organic media by fluorescence and UV-visible spectroscopy. Journal of Porphyrins and Phthalocyanines, 2009, 13, 859-864.	0.8	18
45	Electrochemical and spectroelectrochemical studies of β-phosphorylated Zn porphyrins. Journal of Porphyrins and Phthalocyanines, 2013, 17, 1035-1045.	0.8	18
46	Design of UV-Vis-NIR panchromatic crown-phthalocyanines with controllable aggregation. Dalton Transactions, 2015, 44, 1366-1378.	3.3	18
47	Novel one-pot regioselective route towards heteroleptic lanthanide (phthalocyaninato)(porphyrinato) triple-decker complexes. Journal of Porphyrins and Phthalocyanines, 2009, 13, 283-290.	0.8	17
48	The complexation of metal ions with various organic ligands in water: prediction of stability constants by QSPR ensemble modelling. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 83, 89-101.	1.6	17
49	Complexation of Mn ²⁺ , Fe ²⁺ , Y ³⁺ , La ³⁺ , Pb ²⁺ , and UO ₂ ²⁺ with Organic Ligands: QSPR Ensemble Modeling of Stability Constants. Industrial & Engineering Chemistry Research, 2012, 51, 13482-13489.	3.7	16
50	General and Scalable Approach to A ₂ B―and A ₂ BCâ€Type Porphyrin Phosphonate Diesters. European Journal of Organic Chemistry, 2016, 2016, 4881-4892.	2.4	16
51	Cation-Induced Dimerization of Heteroleptic Crown-Substituted Trisphthalocyaninates as Revealed by X-ray Diffraction and NMR Spectroscopy. Inorganic Chemistry, 2020, 59, 9424-9433.	4.0	16
52	Porphyrinylphosphonateâ€Based Metal–Organic Framework: Tuning Proton Conductivity by Ligand Design. Chemistry - A European Journal, 2021, 27, 1598-1602.	3.3	16
53	Aromatic Nucleophilic Substitution as a Side Process in the Synthesis of Alkoxy- and Crown-Substituted (Na)phthalocyanines. Macroheterocycles, 2019, 12, 75-81.	0.5	16
54	Deactivation of singlet oxygen by cerium oxide nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111925.	3.9	15

#	Article	IF	CITATIONS
55	Long-Sought Redox Isomerization of the Europium(III/II) Complex Achieved by Molecular Reorientation at the Interface. Langmuir, 2020, 36, 1423-1429.	3.5	15
56	NMR investigation of intramolecular dynamics of heteroleptic triple-decker (porphyrinato)(phthalocyaninato) lanthanides. Dalton Transactions, 2011, 40, 11474.	3.3	14
57	Effect of the anchoring group in porphyrin sensitizers: phosphonate versus carboxylate linkages. Turkish Journal of Chemistry, 2014, 38, 980-993.	1.2	14
58	Insights into the Synthesis and the Solution Behavior of <i>meso</i> â€Aryloxy―and Alkoxy‧ubstituted Porphyrins. European Journal of Organic Chemistry, 2015, 2015, 5610-5619.	2.4	14
59	lmidazoporphyrins as supramolecular tectons: synthesis and self-assembly of zinc 2-(4-pyridyl)-1 <i>H</i> -imidazo[4,5- <i>b</i>]porphyrinate. CrystEngComm, 2019, 21, 1488-1498.	2.6	14
60	Exploring the Optimal Synthetic Pathways towards µ arbido Diruthenium(IV) Bisphthalocyaninates. European Journal of Inorganic Chemistry, 2019, 2019, 1923-1931.	2.0	14
61	Early Lanthanides (Porphyrinato)(Crownphthalocyaninates): Efficient Synthesis and NIR Absorption Characteristics. Macroheterocycles, 2010, 3, 210-217.	0.5	14
62	New approach for post-functionalization of meso-formylporphyrins. RSC Advances, 2015, 5, 67242-67246.	3.6	13
63	Photophysical and photochemical properties of non-peripheral butoxy-substituted phthalocyanines with absorption in NIR range. Mendeleev Communications, 2018, 28, 275-277.	1.6	13
64	Hybrid organic–inorganic supramolecular systems based on a pyridine end-decorated molybdenum(<scp>ii</scp>) halide cluster and zinc(<scp>ii</scp>) porphyrinate. Dalton Transactions, 2019, 48, 1835-1842.	3.3	13
65	Proton conductivity as a function of the metal center in porphyrinylphosphonate-based MOFs. Dalton Transactions, 2021, 50, 6549-6560.	3.3	13
66	Post-synthetic methods for functionalization of imidazole-fused porphyrins. Journal of Porphyrins and Phthalocyanines, 2018, 22, 619-631.	0.8	12
67	Crown-substituted naphthalocyanines: synthesis and supramolecular control over aggregation and photophysical properties. Dalton Transactions, 2018, 47, 15226-15231.	3.3	12
68	Optical limiting properties, structure and simplified TD-DFT calculations of scandium tetra-15-crown-5 phthalocyaninates. Journal of Porphyrins and Phthalocyanines, 2020, 24, 589-601.	0.8	12
69	Synthesis and structure of homo- and heteronuclear rare earth element complexes with tetra-15-crown-5-phthalocyanine. Mendeleev Communications, 2006, 16, 67-69.	1.6	11
70	Thermodynamics and mechanisms of the formation of supramolecules and supramolecular assemblies of s, p, d and f elements: problems and prospects. Russian Chemical Reviews, 2007, 76, 213-233.	6.5	11
71	Synthesis and Copper(I)â€Driven Disaggregation of a Zinc omplexed Phthalocyanine Bearing Four Lateral Coordinating Rings. European Journal of Organic Chemistry, 2012, 2012, 6888-6894.	2.4	11
72	Plasmon-enhanced light absorption at organic-coated interfaces: collectivity matters. Journal of Materials Chemistry C, 2018, 6, 1413-1420.	5.5	11

#	Article	lF	CITATIONS
73	Copper(II) Complexes with Aromatico-Phosphorylated Phenols - Synthesis, Crystal Structures, and X-ray Photoelectron Spectroscopy. European Journal of Inorganic Chemistry, 2013, 2013, 4823-4831.	2.0	10
74	Towards sensory Langmuir monolayers consisting of macrocyclic pentaaminoanthraquinone. New Journal of Chemistry, 2014, 38, 317-329.	2.8	10
75	Crown-interlocked lanthanide diphthalocyaninates with switchable panchromatic absorption. Journal of Porphyrins and Phthalocyanines, 2017, 21, 406-415.	0.8	10
76	Complexation of the new tetrakis[methyl(diphenylphosphorylated)] cyclen derivative with transition metals: First examples of octacoordinate zinc(II) and cobalt(II) complexes with cyclen molecules. Inorganica Chimica Acta, 2018, 478, 250-259.	2.4	10
77	2,4,6-Tris[2-(diphenylphosphoryl)-4-ethylphenoxy]-1,3,5-triazine: A new ligand for lithium binding. Inorganica Chimica Acta, 2019, 497, 119095.	2.4	10
78	Electrochemical, Spectroelectrochemical, and Structural Studies of Mono- and Diphosphorylated Zinc Porphyrins and Their Self-Assemblies. Inorganic Chemistry, 2019, 58, 4665-4678.	4.0	10
79	Switchable Aromaticity of Phthalocyanine via Reversible Nucleophilic Aromatic Addition to an Electron-Deficient Phosphorus(V) Complex. Journal of the American Chemical Society, 2021, 143, 14053-14058.	13.7	10
80	Modern Synthetic Approaches to Phthalonitriles with Special Emphasis on Transition-Metal Catalyzed Cyanation Reactions. Macroheterocycles, 2013, 6, 23-32.	0.5	9
81	Behaviour of Low-Symmetry Crown-Phthalocyanine in Solution: Concentration Aggregation vs. Cation-Induced Assembly. Macroheterocycles, 2014, 7, 47-54.	0.5	9
82	A metal-responsive interdigitated bilayer for selective quantification of mercury(<scp>ii</scp>) traces by surface plasmon resonance. Analyst, The, 2016, 141, 1912-1917.	3.5	9
83	Electronic structure and NH-tautomerism of a novel metal-free phenanthroline-annelated phthalocyanine. Dyes and Pigments, 2017, 140, 469-479.	3.7	9
84	Platinum(<scp>ii</scp>) and palladium(<scp>ii</scp>) complexes with electron-deficient <i>meso</i> -diethoxyphosphorylporphyrins: synthesis, structure and tuning of photophysical properties by varying peripheral substituents. Dalton Transactions, 2019, 48, 8882-8898.	3.3	9
85	A panchromatic pyrazine-fused porphyrin dimer. Mendeleev Communications, 2020, 30, 162-164.	1.6	9
86	Heteroleptic Crown-Substituted Tris(phthalocyaninates) as Dynamic Supramolecular Scaffolds with Switchable Rotational States and Tunable Magnetic Properties. Inorganic Chemistry, 2021, 60, 9110-9121.	4.0	9
87	Copper(II) <i>meso</i> -Tetraphenyl- and <i>meso</i> -Tetrafluorenyl Porphyrinates as Charge Carrier Transporting and Electroluminescent Compounds. ACS Omega, 2022, 7, 8613-8622.	3.5	9
88	Substrate-mediated face-on self-assembly of non-amphiphilic phthalocyaninates on solids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 376-383.	4.7	8
89	Classification of Metal Binders by NaÃ ⁻ ve Bayes Classifier on the Base of Molecular Fragment Descriptors and Ensemble Modeling. Molecular Informatics, 2019, 38, e1900002.	2.5	8
90	Functionalized heterocycle-appended porphyrins: catalysis matters. RSC Advances, 2020, 10, 42388-42399.	3.6	8

#	Article	IF	CITATIONS
91	Reprocessing of simulated voloxidized uranium–oxide SNF in the CARBEX process. Nuclear Engineering and Technology, 2019, 51, 1799-1804.	2.3	7
92	Synthesis of (<i>trans</i> â€A ₂)BCâ€Type Porphyrins with Acceptor Diethoxyphosphoryl and Various Donor Groups and their Assembling in the Solid State and at Interfaces. European Journal of Organic Chemistry, 2019, 2019, 3146-3162.	2.4	7
93	Crown- and phosphoryl-containing metal phthalocyanines in solutions of poly(N-vinylpyrrolidone): Supramolecular organization, accumulation in cells, photo-induced generation of reactive oxygen species, and cytotoxicity. Journal of Photochemistry and Photobiology B: Biology, 2020, 202, 111722.	3.8	7
94	New Octopusâ€like Phthalocyanines as Fullerene Receptors: Synthesis and Photophysical Investigation. Israel Journal of Chemistry, 2016, 56, 181-187.	2.3	6
95	Heterocycle-appended lanthanum(III) sandwich-type (porphyrinato)(phthalocyaninates). Dyes and Pigments, 2020, 181, 108550.	3.7	6
96	Synthesis, electronic structure and NH-tautomerism of novel mono- and dibenzoannelated phthalocyanines. Dyes and Pigments, 2020, 181, 108564.	3.7	6
97	Imidazoporphyrins with appended polycyclic aromatic hydrocarbons: To conjugate or not to conjugate?. Dyes and Pigments, 2021, 186, 109042.	3.7	6
98	Revisiting the One-Step Synthesis of Heteroleptic Lanthanide(III) (Porphyrinato)(Phthalocyaninates): Opportunities and Limitations. Macroheterocycles, 2017, 10, 514-515.	0.5	6
99	Regiospecific synthesis of lanthanum(III) and neodymium(III) triple-decker (tetrakis-meso-(3-bromophenyl)-porphyrinato)(crownphthalocyaninates). Journal of Porphyrins and Phthalocyanines, 2013, 17, 1027-1034.	0.8	5
100	MCD spectroscopy and TD-DFT calculations of magnesium tetra-(15-crown-5-oxanthreno)-phthalocyanine. Journal of Porphyrins and Phthalocyanines, 2016, 20, 505-513.	0.8	5
101	Coordination self-assembly through weak interactions in <i>meso</i> -dialkoxyphosphoryl-substituted zinc porphyrinates. Dalton Transactions, 2019, 48, 5372-5383.	3.3	5
102	5,8-Disubstituted crown-naphthalonitriles as a platform for highly soluble naphthalocyanines. Dyes and Pigments, 2020, 180, 108484.	3.7	5
103	Cation-Induced Dimerization of Crown-Substituted Gallium Phthalocyanine by Complexing with Alkali Metals: The Crucial Role of a Central Metal. Inorganic Chemistry, 2021, 60, 1948-1956.	4.0	5
104	Spin Crossover in Nickel(II) Tetraphenylporphyrinate via Forced Axial Coordination at the Air/Water Interface. Molecules, 2021, 26, 4155.	3.8	5
105	The approach to the direct interpretation of 13C NMR of heteroleptic triple-decker (porphyrinato)(phthalocyaninato) lanthanum(III) without carbon labeling. Journal of Porphyrins and Phthalocyanines, 2011, 15, 667-673.	0.8	4
106	Photophysics and NLO properties of Ga(III) and In(III) phthalocyaninates bearing diethyleneglycol chains. Journal of Porphyrins and Phthalocyanines, 2018, 22, 137-148.	0.8	4
107	New Sorbents for Processing Radioactive Waste. , 2018, , 1-40.		4
108	Synthesis, structure, photo- and electroluminescent properties of bis(2-phenylpyridinato-N,c2â€2)[2-(2′-tosylaminophenyl)benzoxazolato-N,Nâ€2]iridium(III). Inorganica Chimica	2.4	4

Acta, 2018, 482, 863-869.

#	Article	IF	CITATIONS
109	diphenylphosphine Oxide and Ionic Liquid for Nd(III) Recovery from Nitric Acid Media. Molecules, 2021, 26, 2440.	3.8	4
110	(24-Сrown-8)-Linked Dimeric Phthalocyanines and Their Metal Complexes. Macroheterocycles, 2014, 7, 153-161.	0.5	4
111	Infrared 4f-Luminescence of Erbium(III) Complexes with Tetrapyrrole Ligands. Macroheterocycles, 2018, 11, 262-268.	0.5	4
112	Diaryl-pyrazinoporphyrins $\hat{a} \in$ Prospective photocatalysts for efficient sulfoxidation. Journal of Catalysis, 2022, 413, 342-352.	6.2	4
113	Electron transport and morphological changes in the electrode/erythrocyte system. Mendeleev Communications, 2017, 27, 183-185.	1.6	3
114	Molecular brakes based on the Zn(ii) porphyrin dimer. New Journal of Chemistry, 2018, 42, 7816-7822.	2.8	3
115	Carbene insertion to N–H bonds of 2-aminothiazole and 2-amino-1,3,4-thiadiazole derivatives catalyzed by iron phthalocyanine. Journal of Porphyrins and Phthalocyanines, 2019, 23, 497-506.	0.8	3
116	Restriction of the rotational relaxation of a butadiyne-bridged porphyrin dimer in ultrathin films. New Journal of Chemistry, 2019, 43, 11419-11425.	2.8	3
117	Reprocessing of fluorination ash surrogate in the CARBOFLUOREX process. Nuclear Engineering and Technology, 2020, 52, 109-114.	2.3	3
118	Liquid–liquid extraction of trivalent americium from carbonate and carbonate–peroxide aqueous solutions by methyltrioctylammonium carbonate in toluene. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324, 1031-1038.	1.5	3
119	Design of Extractants for F-Block Elements in a Series of (2-(Diphenylphosphoryl)methoxyphenyl)diphenylphosphine Oxide Derivatives: Synthesis, Quantum-Chemical, and Extraction Studies. Molecules, 2021, 26, 2217.	3.8	3
120	Octopusâ€Type Crownâ€Bisphthalocyaninate Anchor for Bottomâ€Up Assembly of Supramolecular Bilayers with Expanded Redoxâ€Switching Capability. Small, 2022, 18, e2104306.	10.0	3
121	An approach towards modification of UiO-type MOFs with phosphonate-substituted porphyrins. Polyhedron, 2022, 219, 115794.	2.2	3
122	Synthesis and Complexation Properties of 2-Hydroxy-5-methoxyphenylphosphonic Acid (H3L1). Crystal Structure of the [Cu(H2L1)2(Đ2Đž)2] Complex. Russian Journal of General Chemistry, 2021, 91, 2176-2186.	0.8	3
123	New Sorbents for Processing Radioactive Waste. , 2019, , 3621-3660.		2
124	The Prospects for Processing Reservoir Oil Sludge into Hydrocarbons by Low-Temperature Hydrogenation in Sorbing Electrochemical Matrices in Comparison with Conventional High-Temperature Hydrocracking. Energies, 2020, 13, 5362.	3.1	2
125	Supramolecular Organization of Magnesium Octa[(4'-benzo- 15-crown-5)oxy]phthalocyaninate in Aqueous Solutions of Polyelectrolytes and Surfactants: Analysis by Spectral Methods. Macroheterocycles, 2015, 8, 343-350.	0.5	2
126	Interaction of Octopus-like Cobalt(II) Phthalocyaninate with Fullerene C70 Studied by ESR Spectroscopy. Macroheterocycles, 2018, 11, 390-395.	0.5	2

#	Article	IF	CITATIONS
127	Quantum-Сhemical Insight into the Reactivity of 5-Bromo-10,20-diaryl-porphyrins towards Nucleophiles. Macroheterocycles, 2012, 5, 338-342.	0.5	2
128	Prediction of Stability Constants of metal-ligand Complexes Using Thermodynamic Radii of Metal Ions. Comments on Inorganic Chemistry, 2023, 43, 16-33.	5.2	2
129	Theoretical Explanation of Reactivity and Stability of Phosphorus(V) Porphyrins. Macroheterocycles, 2019, 12, 143-147.	0.5	1
130	DFT Evaluation of Reactivity of \hat{l}^2 -Substituted meso-Bromoporphyrins towards Nucleophilic Substitution. Macroheterocycles, 2018, 11, 150-154.	0.5	1
131	Separation of Rare-Earth Elements from Nitrate Solutions by Solvent Extraction Using Mixtures of Methyltri-n-octylammonium Nitrate and Tri-n-butyl Phosphate. Molecules, 2022, 27, 557.	3.8	1
132	Hot Deuteron Generation and Charged Particle Emissions on Excitation of Deuterium Subsystem in Metal Deuterides. ACS Symposium Series, 2010, , 95-117.	0.5	0
133	Tetra-(benzo-24-crown-8)-phthalocyanines as a platform for supramolecular ensembles: Synthesis and interaction with viologen. Journal of Porphyrins and Phthalocyanines, 2020, 24, 1083-1092.	0.8	0
134	Benzoannelated A3B-Phthalocyanines with Diethyleneglycol Substituents: Synthesis and Control of Aggregation. Macroheterocycles, 2021, 14, 130-134.	0.5	0
135	Carbene insertion to N–H bonds of 2-aminothiazole and 2-amino-1,3,4-thiadiazole derivatives catalyzed by iron phthalocyanine. , 2021, , 1198-1207.		0
136	Wasteless Processing of Renewable Protein and Carbohydrate-Containing Waste into Consumer Goods. , 2019, , 2085-2116.		0