Mihaly Himics

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2876519/publications.pdf

Version: 2024-02-01

		1307594	1125743	
13	309	7	13	
papers	citations	h-index	g-index	
13	13	13	347	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Projections of soil loss by water erosion in Europe by 2050. Environmental Science and Policy, 2021, 124, 380-392.	4.9	111
2	<scp>EU</scp> â€wide Economic and Environmental Impacts of <scp>CAP</scp> Greening with High Spatial and Farmâ€type Detail. Journal of Agricultural Economics, 2017, 68, 651-681.	3.5	75
3	Does the current trade liberalization agenda contribute to greenhouse gas emission mitigation in agriculture?. Food Policy, 2018, 76, 120-129.	6.0	41
4	Setting Climate Action as the Priority for the Common Agricultural Policy: AÂSimulation Experiment. Journal of Agricultural Economics, 2020, 71, 50-69.	3.5	17
5	Baltic Sea eutrophication status is not improved by the first pillar of the European Union Common Agricultural Policy. Regional Environmental Change, 2019, 19, 2465-2476.	2.9	14
6	Greenhouse gas mitigation technologies in agriculture: Regional circumstances and interactions determine cost-effectiveness. Journal of Cleaner Production, 2021, 317, 128406.	9.3	13
7	European Agriculture after Brexit: Does Anyone Benefit from the Divorce?. Journal of Agricultural Economics, 2021, 72, 3-24.	3.5	11
8	Can investments in manure technology reduce nutrient leakage to the Baltic Sea?. Ambio, 2019, 48, 1264-1277.	5.5	9
9	Flexible and welfare-consistent tariff aggregation over exporter regions. Economic Modelling, 2016, 53, 375-387.	3.8	6
10	Simulated economic impacts in applied trade modelling: A comparison of tariff aggregation approaches. Economic Modelling, 2020, 87, 344-357.	3.8	5
11	It is all in the details: A bilateral approach for modelling trade agreements at the tariff line. Canadian Journal of Agricultural Economics, 2021, 69, 415-442.	2.1	3
12	A Bayesian econometrics and risk programming approach for analysing the impact of decoupled payments in the European Union*. Australian Journal of Agricultural and Resource Economics, 2021, 65, 729-759.	2.6	3
13	Managing Marine Mammals and Fisheries: A Calibrated Programming Model for the Seal-Fishery Interaction in Sweden. Environmental and Resource Economics, 2022, 81, 501-530.	3.2	1