
Susan M Majka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2876320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	De novo generation of white adipocytes from the myeloid lineage via mesenchymal intermediates is age, adipose depot, and gender specific. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14781-14786.	3.3	126
2	Fgf10-Hippo Epithelial-Mesenchymal Crosstalk Maintains and Recruits Lung Basal Stem Cells. Developmental Cell, 2017, 43, 48-59.e5.	3.1	123
3	FGF10-FGFR2B Signaling Generates Basal Cells and Drives Alveolar Epithelial Regeneration by Bronchial Epithelial Stem Cells after Lung Injury. Stem Cell Reports, 2019, 12, 1041-1055.	2.3	94
4	ABCG2 ^{pos} lung mesenchymal stem cells are a novel pericyte subpopulation that contributes to fibrotic remodeling. American Journal of Physiology - Cell Physiology, 2014, 307, C684-C698.	2.1	79
5	Dysfunctional Resident Lung Mesenchymal Stem Cells Contribute to Pulmonary Microvascular Remodeling. Pulmonary Circulation, 2013, 3, 31-49.	0.8	67
6	ldentification of a common Wnt-associated genetic signature across multiple cell types in pulmonary arterial hypertension. American Journal of Physiology - Cell Physiology, 2014, 307, C415-C430.	2.1	64
7	Physiologic and molecular consequences of endothelial Bmpr2 mutation. Respiratory Research, 2011, 12, 84.	1.4	54
8	Analysis and Isolation of Adipocytes by Flow Cytometry. Methods in Enzymology, 2014, 537, 281-296.	0.4	53
9	Selective depletion of vascular EC-SOD augments chronic hypoxic pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L868-L876.	1.3	38
10	Disruption of lineage specification in adult pulmonary mesenchymal progenitor cells promotes microvascular dysfunction. Journal of Clinical Investigation, 2017, 127, 2262-2276.	3.9	35
11	Pathologic Fibroblasts in Idiopathic Subglottic Stenosis Amplify Local Inflammatory Signals. Otolaryngology - Head and Neck Surgery, 2019, 160, 107-115.	1.1	34
12	Cadherin-11 blockade reduces inflammation-driven fibrotic remodeling and improves outcomes after myocardial infarction. JCI Insight, 2019, 4, .	2.3	33
13	Cigarette smoke induction of S100A9 contributes to chronic obstructive pulmonary disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L1021-L1035.	1.3	21
14	Shared Gene Expression Patterns in Mesenchymal Progenitors Derived from Lung and Epidermis in Pulmonary Arterial Hypertension: Identifying Key Pathways in Pulmonary Vascular Disease. Pulmonary Circulation, 2016, 6, 483-497.	0.8	19
15	Bone Marrow–Derived Proangiogenic Cells Mediate Pulmonary Arteriole Stiffening via Serotonin 2B Receptor Dependent Mechanism. Circulation Research, 2018, 123, e51-e64.	2.0	17
16	Resident mesenchymal vascular progenitors modulate adaptive angiogenesis and pulmonary remodeling via regulation of canonical Wnt signaling. FASEB Journal, 2020, 34, 10267-10285.	0.2	16
17	Deregulated angiogenesis in chronic lung diseases: a possible role for lung mesenchymal progenitor cells (2017 Grover Conference Series). Pulmonary Circulation, 2018, 8, 1-18.	0.8	14
18	A highâ€yield isolation and enrichment strategy for human lung microvascular endothelial cells. Pulmonary Circulation, 2017, 7, 108-116.	0.8	12

Susan M Majka

#	Article	IF	CITATIONS
19	KCNK3 Mutation Causes Altered Immune Function in Pulmonary Arterial Hypertension Patients and Mouse Models. International Journal of Molecular Sciences, 2021, 22, 5014.	1.8	11
20	Hemopexin dosing improves cardiopulmonary dysfunction in murine sickle cell disease. Free Radical Biology and Medicine, 2021, 175, 95-107.	1.3	10
21	Targeting c-Src Reverses Accelerated GPX-1 mRNA Decay in Chronic Obstructive Pulmonary Disease Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 598-607.	1.4	8
22	CREB depletion in smooth muscle cells promotes medial thickening, adventitial fibrosis and elicits pulmonary hypertension. Pulmonary Circulation, 2020, 10, 1-15.	0.8	8
23	GBT1118, a compound that increases the oxygen affinity of hemoglobin, improves survival in murine hypoxic acute lung injury. Journal of Applied Physiology, 2018, 124, 899-905.	1.2	7
24	Balanced Wnt/Dickkopf1 signaling by mesenchymal vascular progenitor cells in the microvascular niche maintains distal lung structure and function. American Journal of Physiology - Cell Physiology, 2021, 320, C119-C131.	2.1	5
25	Inactivation of Tsc2 in Abcg2 lineage-derived cells drives the appearance of polycystic lesions and fibrosis in the adult kidney. American Journal of Physiology - Renal Physiology, 2019, 317, F1201-F1210.	1.3	4
26	Optimization of combined measures of airway physiology and cardiovascular hemodynamics in mice. Pulmonary Circulation, 2020, 10, 1-11.	0.8	4
27	Mesenchymal Regulation of the Microvascular Niche in Chronic Lung Diseases. , 2019, 9, 1431-1441.		2
28	Enrichment and Characterization of Human and Murine Pulmonary Mesenchymal Progenitor Cells (MPC). Methods in Molecular Biology, 2020, 2155, 125-140.	0.4	2
29	Identifying Mesenchymal Pathways That Initiate Emphysema in Order to Develop Targeted Therapies.	1.5	Ο