Meng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2876033/publications.pdf

Version: 2024-02-01

73 73 73 6182 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Recent advances on interface engineering of perovskite solar cells. Nano Research, 2022, 15, 85-103.	10.4	59
2	Potassium tetrafluoroborate-induced defect tolerance enables efficient wide-bandgap perovskite solar cells. Journal of Colloid and Interface Science, 2022, 605, 710-717.	9.4	20
3	Excess PbI2 evolution for triple-cation based perovskite solar cells with 21.9% efficiency. Journal of Energy Chemistry, 2022, 66, 152-160.	12.9	43
4	Small molecule interfacial cross-linker for highly efficient two-dimensional perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 35-41.	12.9	10
5	Low-pressure accessible gas-quenching for absolute methylammonium-free perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 2105-2112.	10.3	13
6	Unraveling the Mechanism of Ion-Migration Suppression by Interstitial Doping for Operationally Stable CsPbI ₂ Br Perovskite Solar Cells. Chemistry of Materials, 2022, 34, 1010-1019.	6.7	11
7	PTAA as Efficient Hole Transport Materials in Perovskite Solar Cells: A Review. Solar Rrl, 2022, 6, .	5 . 8	65
8	Heterogeneous lead iodide obtains perovskite solar cells with efficiency of 24.27%. Chemical Engineering Journal, 2022, 448, 137676.	12.7	29
9	Integrating Lowâ€Cost Earthâ€Abundant Coâ€Catalysts with Encapsulated Perovskite Solar Cells for Efficient and Stable Overall Solar Water Splitting. Advanced Functional Materials, 2021, 31, 2008245.	14.9	43
10	Ultra-smooth CsPbI2Br film via programmable crystallization process for high-efficiency inorganic perovskite solar cells. Journal of Materials Science and Technology, 2021, 66, 150-156.	10.7	12
11	Phosphorescent $[3 + 2 + 1]$ coordinated $lr(\langle scp \rangle iii \langle scp \rangle)$ cyano complexes for achieving efficient phosphors and their application in OLED devices. Chemical Science, 2021, 12, 10165-10178.	7.4	32
12	Elucidating Mechanisms behind Ambient Storage-Induced Efficiency Improvements in Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 925-933.	17.4	52
13	Remanent solvent management engineering of perovskite films for PEDOT: PSS-based inverted solar cells. Solar Energy, 2021, 216, 530-536.	6.1	6
14	Efficient carrier transport via dual-function interfacial engineering using cesium iodide for high-performance perovskite solar cells based on NiOx hole transporting materials. Nano Research, 2021, 14, 3864-3872.	10.4	14
15	A Review on Gasâ€Quenching Technique for Efficient Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100386.	5.8	28
16	Multifunctional quantum dot materials for perovskite solar cells: Charge transport, efficiency and stability. Nano Today, 2021, 40, 101286.	11.9	16
17	Pristine inorganic nickel oxide as desirable hole transporting material for efficient quasi two-dimensional perovskite solar cells. Journal of Power Sources, 2021, 512, 230452.	7.8	9
18	Novel spiro[fluorene-9,9′-xanthene]-based hole transport layers for red and green PHOLED devices with high efficiency and low efficiency roll-off. Journal of Materials Chemistry C, 2021, 9, 3247-3256.	5 . 5	12

#	Article	IF	Citations
19	A Highâ€Performance Photodetector Based on 1D Perovskite Radial Heterostructure. Advanced Optical Materials, 2021, 9, 2101504.	7.3	8
20	Baseplate Temperatureâ€Dependent Vertical Composition Gradient in Pseudoâ€Bilayer Films for Printing Nonâ€Fullerene Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2102135.	19.5	33
21	A Review on Gasâ€Quenching Technique for Efficient Perovskite Solar Cells. Solar Rrl, 2021, 5, 2170105.	5.8	2
22	A series of uranium-organic frameworks: Crucial role of the protonation ability of auxiliary ligands. Inorganic Chemistry Communication, 2020, 111, 107628.	3.9	11
23	Understanding how chlorine additive in a dynamic sequential process affects FA0.3MA0.7PbI3 perovskite film growth for solar cell application. Materials Today Energy, 2020, 18, 100551.	4.7	5
24	Oxidization-Free Spiro-OMeTAD Hole-Transporting Layer for Efficient CsPbl ₂ Br Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 52779-52787.	8.0	23
25	Rising from the Ashes: Gaseous Therapy for Robust and Large-Area Perovskite Solar Cells. ACS Applied Materials & Solar Cel	8.0	11
26	Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells. Science, 2020, 368, .	12.6	306
27	Effects of Annealing Time on Triple Cation Perovskite Films and Their Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied & Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied	8.0	16
28	Acetic Acid Assisted Crystallization Strategy for High Efficiency and Longâ€Term Stable Perovskite Solar Cell. Advanced Science, 2020, 7, 1903368.	11.2	85
29	Superior Selfâ€Charged and â€Powered Chemical Sensing with High Performance for NO ₂ Detection at Room Temperature. Advanced Optical Materials, 2020, 8, 1901863.	7. 3	27
30	Large-Area 23%-Efficient Monolithic Perovskite/Homojunction-Silicon Tandem Solar Cell with Enhanced UV Stability Using Down-Shifting Material. ACS Energy Letters, 2019, 4, 2623-2631.	17.4	88
31	Minimizing Voltage Loss in Efficient All-Inorganic CsPbl ₂ Br Perovskite Solar Cells through Energy Level Alignment. ACS Energy Letters, 2019, 4, 2491-2499.	17.4	68
32	Deconstruction-assisted perovskite formation for sequential solution processing of Cs0.15(MA0.7FA0.3)0.85Pbl3 solar cells. Solar Energy Materials and Solar Cells, 2019, 203, 110200.	6.2	8
33	Synergistic effect of potassium and iodine from potassium triiodide complex additive on gas-quenched perovskite solar cells. Nano Energy, 2019, 63, 103853.	16.0	37
34	Effect of Pressing Pressure on the Performance of Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 2358-2363.	5.1	11
35	Untapped Potentials of Inorganic Metal Halide Perovskite Solar Cells. Joule, 2019, 3, 938-955.	24.0	196
36	The Impact of a Dynamic Twoâ€Step Solution Process on Film Formation of Cs _{0.15} (MA _{0.7} FA _{0.3}) _{0.85} Pbl ₃ Perovskite and Solar Cell Performance. Small, 2019, 15, e1804858.	10.0	46

#	Article	IF	Citations
37	Highly crystalline CsPbl ₂ Br films for efficient perovskite solar cells <i>via</i> compositional engineering. RSC Advances, 2019, 9, 30534-30540.	3.6	7
38	Light-activated inorganic CsPbBr ₂ I perovskite for room-temperature self-powered chemical sensing. Physical Chemistry Chemical Physics, 2019, 21, 24187-24193.	2.8	23
39	Enhanced performance <i>via</i> partial lead replacement with calcium for a CsPbl ₃ perovskite solar cell exceeding 13% power conversion efficiency. Journal of Materials Chemistry A, 2018, 6, 5580-5586.	10.3	202
40	Superior Selfâ€Powered Roomâ€Temperature Chemical Sensing with Lightâ€Activated Inorganic Halides Perovskites. Small, 2018, 14, 1702571.	10.0	82
41	Solution-Processed, Silver-Doped NiO _{<i>x</i>} as Hole Transporting Layer for High-Efficiency Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 561-570.	5.1	95
42	Stereoselective synthesis of cyclopentafullerenes: the reaction of [60]fullerene with aldehydes and triethylamine promoted by magnesium perchlorate. New Journal of Chemistry, 2018, 42, 9291-9299.	2.8	10
43	Stereoselective synthesis of <i>N</i> -ethyl-2-arylvinyl-5-methyl fulleropyrrolidines: reaction of [60]fullerene with aromatic aldehydes and triethylamine/diethylamine in the absence or presence of manganese(<scp>iii</scp>) acetate. Organic and Biomolecular Chemistry, 2018, 16, 2975-2985.	2.8	17
44	Metal-free synthesis of fulleropyrrolidin-2-ols: a novel reaction of [60] fullerene with amines and 2,2-disubstituted acetaldehydes. Organic and Biomolecular Chemistry, 2018, 16, 7648-7656.	2.8	10
45	Halogen-substituted fullerene derivatives for interface engineering of perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 21368-21378.	10.3	40
46	Electrode Design to Overcome Substrate Transparency Limitations for Highly Efficient 1 cm2 Mesoscopic Perovskite Solar Cells. Joule, 2018, 2, 2694-2705.	24.0	34
47	Large area efficient interface layer free monolithic perovskite/homo-junction-silicon tandem solar cell with over 20% efficiency. Energy and Environmental Science, 2018, 11, 2432-2443.	30.8	172
48	High-Efficiency Rubidium-Incorporated Perovskite Solar Cells by Gas Quenching. ACS Energy Letters, 2017, 2, 438-444.	17.4	247
49	Spin-coating free fabrication for highly efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 168, 165-171.	6.2	70
50	Configuration-centered photovoltaic applications of metal halide perovskites. Journal of Materials Chemistry A, 2017, 5, 902-909.	10.3	18
51	Switched Photocurrent on Tin Sulfideâ€Based Nanoplate Photoelectrodes. ChemSusChem, 2017, 10, 670-674.	6.8	18
52	Pyridine linked fluorene hybrid bipolar host for blue, green, and orange phosphorescent organic light-emitting diodes toward solution processing. Journal of Materials Chemistry C, 2017, 5, 11937-11946.	5.5	15
53	The Effect of Stoichiometry on the Stability of Inorganic Cesium Lead Mixed-Halide Perovskites Solar Cells. Journal of Physical Chemistry C, 2017, 121, 19642-19649.	3.1	101
54	Strontium-Doped Low-Temperature-Processed CsPbI ₂ Br Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 2319-2325.	17.4	314

#	Article	IF	Citations
55	Synthesis of 2-Aryl-5-alkyl-fulleropyrrolidines: Metal-Free-Mediated Reaction of [60]Fullerene with Aromatic Aldehydes and Inactive Primary Amines. Journal of Organic Chemistry, 2017, 82, 8617-8627.	3.2	19
56	Overcoming the Challenges of Large-Area High-Efficiency Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1978-1984.	17.4	130
57	Recent advances in lowâ€toxic leadâ€free metal halide perovskite materials for solar cell application. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 392-398.	1.5	26
58	Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions. Nano Research, 2016, 9, 1570-1577.	10.4	88
59	Highly compact and uniform CH3NH3Sn0.5Pb0.5I3 films for efficient panchromatic planar perovskite solar cells. Science Bulletin, 2016, 61, 1558-1562.	9.0	25
60	Organic–inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Research, 2016, 9, 692-702.	10.4	351
61	Semitransparent Fully Air Processed Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 17776-17781.	8.0	7 5
62	Bias-dependent effects in planar perovskite solar cells based on CH3NH3PbI3â^'Cl films. Journal of Colloid and Interface Science, 2015, 453, 9-14.	9.4	11
63	Facile preparation of smooth perovskite films for efficient meso/planar hybrid structured perovskite solar cells. Chemical Communications, 2015, 51, 10038-10041.	4.1	49
64	Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode. Nano Letters, 2015, 15, 2402-2408.	9.1	412
65	Transition from the Tetragonal to Cubic Phase of Organohalide Perovskite: The Role of Chlorine in Crystal Formation of CH ₃ NH ₃ Pbl ₃ on TiO ₂ Substrates. Journal of Physical Chemistry Letters, 2015, 6, 4379-4384.	4.6	91
66	NiO nanosheets as efficient top hole transporters for carbon counter electrode based perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 24121-24127.	10.3	91
67	Stable and Lowâ€Cost Mesoscopic CH ₃ NH ₃ Pbl ₂ Br Perovskite Solar Cells by using a Thin Poly(3â€hexylthiophene) Layer as a Hole Transporter. Chemistry - A European Journal, 2015, 21, 434-439.	3.3	106
68	Insight into the liquid state of organo-lead halide perovskites and their new roles in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 10355.	10.3	8
69	Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH ₃ NH ₃ PbBr _{3â°'x} Cl _x films. Chemical Communications, 2014, 50, 11727-11730.	4.1	225
70	CdS sensitized nanoporous TiO2/CuO layer prepared by dealloying of Ti–Cu amorphous alloy. Materials Letters, 2012, 80, 131-134.	2.6	6
71	Large Area 23%-Efficient Monolithic Perovskite/Homo-Junction-Silicon Tandem Solar Cell with Enhanced UV Stability Using Down-Shifting Material. SSRN Electronic Journal, 0, , .	0.4	0
72	Low-pressure accessible gas-quenching for MA-free perovskite solar cells. , 0, , .		0