Susanna M Thon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2875409/publications.pdf

Version: 2024-02-01

73 papers 4,870 citations

28
h-index

59 g-index

73 all docs

73 docs citations

times ranked

73

6997 citing authors

#	Article	IF	CITATIONS
1	Solvent Responsive Selfâ€Folding of 3D Photosensitive Graphene Architectures. Advanced Intelligent Systems, 2023, 5, 2000195.	3.3	11
2	A New Polystyrene–Poly(vinylpyridinium) Ionic Copolymer Dopant for nâ€Type Allâ€Polymer Thermoelectrics with High and Stable Conductivity Relative to the Seebeck Coefficient giving High Power Factor. Advanced Materials, 2022, 34, e2201062.	11.1	13
3	A Dichlorinated Dithienylethene-Diketopyrrolopyrrole-Based Copolymer with Pronounced P–N Crossover: Evidence for Anionic Seebeck Contribution. , 2022, 4, 1139-1145.		4
4	Diffuse Solar Microâ€Concentrators Using Dielectric Total Internal Reflection with Tunable Side and Top Profiles. Energy Technology, 2022, 10, .	1.8	1
5	Synthesis and Characterization of Large PbSe Colloidal Quantum Dots. Particle and Particle Systems Characterization, 2021, 38, 2000285.	1.2	0
6	New Chalcogenide-Based Hole Transport Materials for Colloidal Quantum Dot Photovoltaics. , 2021, , .		2
7	Maximized Hole Trapping in a Polystyrene Transistor Dielectric from a Highly Branched Iminobis(aminoarene) Side Chain. ACS Applied Materials & Eamp; Interfaces, 2021, 13, 34584-34596.	4.0	3
8	3,4,5â€Trimethoxy Substitution on an Nâ€DMBI Dopant with New Nâ€Type Polymers: Polymerâ€Dopant Matchin for Improved Conductivityâ€Seebeck Coefficient Relationship. Angewandte Chemie, 2021, 133, 27418-27425.	g _{1.6}	1
9	3,4,5â€Trimethoxy Substitution on an Nâ€DMBI Dopant with New Nâ€Type Polymers: Polymerâ€Dopant Matchin for Improved Conductivityâ€Seebeck Coefficient Relationship. Angewandte Chemie - International Edition, 2021, 60, 27212-27219.	g 7.2	20
10	Sulfur-Infused Hole Transport Materials to Overcome Performance-Limiting Transport in Colloidal Quantum Dot Solar Cells. ACS Energy Letters, 2020, 5, 2897-2904.	8.8	15
11	Size- and Surface-Dependent Photoresponses of Solution-Processed Aluminum Nanoparticles. ACS Photonics, 2020, 7, 637-645.	3.2	7
12	Local Defects in Colloidal Quantum Dot Thin Films Measured via Spatially Resolved Multiâ€Modal Optoelectronic Spectroscopy. Advanced Materials, 2020, 32, 1906602.	11.1	7
13	Controlling spectral selectivity in optoelectronics via photonic band engineering in absorbing media. , 2019, , .		0
14	Dopantâ€Dependent Increase in Seebeck Coefficient and Electrical Conductivity in Blended Polymers with Offset Carrier Energies. Advanced Electronic Materials, 2019, 5, 1800618.	2.6	34
15	Spectrally-selective Photovoltaics via Photonic Band Engineering in Absorbing Media. , 2019, , .		0
16	Spray-Cast Electrodes in Colloidal Quantum Dot Solar Cells for Portable Solar Energy Manufacturing. , 2019, , .		1
17	Integrated Concentrators for Scalable High-Power Generation from Colloidal Quantum Dot Solar Cells. ACS Applied Energy Materials, 2018, 1, 2592-2599.	2.5	7
18	Dynamics of Energy Transfer in Large Plasmonic Aluminum Nanoparticles. ACS Photonics, 2018, 5, 805-813.	3.2	20

#	Article	IF	CITATIONS
19	Impact of Yeast Pigmentation on Heat Capture and Latitudinal Distribution. Current Biology, 2018, 28, 2657-2664.e3.	1.8	63
20	Photonic band engineering in absorbing media for spectrally selective optoelectronic films. Optics Express, 2018, 26, 26933.	1.7	5
21	Origins of Stokes Shift in PbS Nanocrystals. Nano Letters, 2017, 17, 7191-7195.	4.5	72
22	High Conductivity and Electronâ€Transfer Validation in an nâ€Type Fluorideâ€Anionâ€Doped Polymer for Thermoelectrics in Air. Advanced Materials, 2017, 29, 1606928.	11.1	144
23	Color-tuned and transparent colloidal quantum dot solar cells via optimized multilayer interference. Optics Express, 2017, 25, A101.	1.7	30
24	Advancing colloidal quantum dot photovoltaic technology. Nanophotonics, 2016, 5, 31-54.	2.9	19
25	An Antimony Selenide Molecular Ink for Flexible Broadband Photodetectors. Advanced Electronic Materials, 2016, 2, 1600182.	2.6	31
26	Plasmonic Nanoparticle Enhancement of Solution-Processed Solar Cells: Practical Limits and Opportunities. ACS Photonics, 2016, 3, 158-173.	3.2	103
27	High-performing visible-blind photodetectors based on SnO2/CuO nanoheterojunctions. Applied Physics Letters, 2015, 107, .	1.5	38
28	Colloidal Quantum Dot Solar Cells Exploiting Hierarchical Structuring. Nano Letters, 2015, 15, 1101-1108.	4.5	137
29	Colloidal Quantum Dot Solar Cells. Chemical Reviews, 2015, 115, 12732-12763.	23.0	987
30	Conformal Fabrication of Colloidal Quantum Dot Solids for Optically Enhanced Photovoltaics. ACS Nano, 2015, 9, 5447-5453.	7.3	29
31	Colloidal quantum dot materials for infrared optoelectronics. Proceedings of SPIE, 2015, , .	0.8	3
32	Efficient Sprayâ€Coated Colloidal Quantum Dot Solar Cells. Advanced Materials, 2015, 27, 116-121.	11.1	139
33	Highâ€Performance Quantumâ€Dot Solids via Elemental Sulfur Synthesis. Advanced Materials, 2014, 26, 3513-3519.	11.1	39
34	The Complete Inâ€Gap Electronic Structure of Colloidal Quantum Dot Solids and Its Correlation with Electronic Transport and Photovoltaic Performance. Advanced Materials, 2014, 26, 937-942.	11.1	54
35	Photovoltaics: The Complete Inâ€Gap Electronic Structure of Colloidal Quantum Dot Solids and Its Correlation with Electronic Transport and Photovoltaic Performance (Adv. Mater. 6/2014). Advanced Materials, 2014, 26, 822-822.	11.1	1
36	Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. Nature Communications, 2014, 5, 3803.	5.8	214

#	Article	IF	CITATIONS
37	Folded-Light-Path Colloidal Quantum Dot Solar Cells. Scientific Reports, 2013, 3, 2166.	1.6	21
38	Role of Bond Adaptability in the Passivation of Colloidal Quantum Dot Solids. ACS Nano, 2013, 7, 7680-7688.	7. 3	69
39	Directly Deposited Quantum Dot Solids Using a Colloidally Stable Nanoparticle Ink. Advanced Materials, 2013, 25, 5742-5749.	11.1	99
40	Far-field emission profiles from L3 photonic crystal cavity modes. Photonics and Nanostructures - Fundamentals and Applications, 2013, 11, 37-47.	1.0	6
41	Jointly Tuned Plasmonic–Excitonic Photovoltaics Using Nanoshells. Nano Letters, 2013, 13, 1502-1508.	4.5	93
42	Dynamic Trap Formation and Elimination in Colloidal Quantum Dots. Journal of Physical Chemistry Letters, 2013, 4, 987-992.	2.1	115
43	Selfâ€Assembled, Nanowire Network Electrodes for Depleted Bulk Heterojunction Solar Cells. Advanced Materials, 2013, 25, 1769-1773.	11.1	102
44	Self-Assembled, Nanowire Network Electrodes for Depleted Bulk Heterojunction Solar Cells (Adv.) Tj ETQq0 0 0	rgBT/Over	lock 10 Tf 50
45	Joint Mapping of Mobility and Trap Density in Colloidal Quantum Dot Solids. ACS Nano, 2013, 7, 5757-5762.	7.3	30
46	Interface Recombination in Depleted Heterojunction Photovoltaics based on Colloidal Quantum Dots. Advanced Energy Materials, 2013, 3, 917-922.	10.2	117
47	The Donor–Supply Electrode Enhances Performance in Colloidal Quantum Dot Solar Cells. ACS Nano, 2013, 7, 6111-6116.	7.3	113
48	Broadband solar absorption enhancement via periodic nanostructuring of electrodes. Scientific Reports, 2013, 3, 2928.	1.6	69
49	Acousto-mechanical tuning of photonic crystal nanocavity modes. , 2013, , .		O
50	Electric field engineering using quantum-size-effect-tuned heterojunctions. Applied Physics Letters, 2013, 103, .	1.5	12
51	Time domain investigation of radio frequency acousto-mechanical tuning of photonic crystal nanocavity modes., 2013,,.		0
52	Single and coupled photonic crystal cavities for solid-state cavity-QED., 2012,,.		0
53	Optical modes in oxide-apertured micropillar cavities. Optics Letters, 2012, 37, 4678.	1.7	9
54	Effect of a nanoparticle on the optical properties of a photonic crystal cavity: theory and experiment. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 698.	0.9	7

#	Article	lF	Citations
55	Cavity-QED with quantum dots in oxide-apertured micropillars. , 2012, , .		0
56	Single and coupled L3 photonic crystal cavities for cavity-QED experiments. , 2012, , .		0
57	Hybrid passivated colloidal quantum dot solids. Nature Nanotechnology, 2012, 7, 577-582.	15.6	1,100
58	Ordered Nanopillar Structured Electrodes for Depleted Bulk Heterojunction Colloidal Quantum Dot Solar Cells. Advanced Materials, 2012, 24, 2315-2319.	11.1	124
59	Inorganic passivation and doping control in colloidal quantum dot photovoltaics. , 2012, , .		0
60	Strain tuning of quantum dot optical transitions via laser-induced surface defects. Physical Review B, 2011, 84, .	1.1	20
61	Colloidal quantum dot photovoltaics. Proceedings of SPIE, 2011, , .	0.8	2
62	Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system. Applied Physics Letters, 2011, 98, .	1.5	83
63	Optomechanical trampoline resonators. Optics Express, 2011, 19, 19708.	1.7	67
64	Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons. Nature Photonics, 2011, 5, 605-609.	15.6	140
65	Independent electrical tuning of separated quantum dots in coupled photonic crystal cavities. Applied Physics Letters, 2011, 99, 161102.	1.5	9
66	Permanent tuning of quantum dot transitions to degenerate microcavity resonances. Applied Physics Letters, 2011, 98, 121111.	1.5	17
67	Solid-state cavity-QED in polarization-degenerate micropillar cavities. , 2011, , .		0
68	High-frequency tuning of photonic crystal defect cavity modes using surface acoustic waves. Proceedings of SPIE, 2010, , .	0.8	0
69	Polychromatic Photonic Quasicrystal Cavities. Physical Review Letters, 2010, 104, 243901.	2.9	18
70	Fiber-connectorized micropillar cavities. Applied Physics Letters, 2010, 97, .	1.5	15
71	Tuning micropillar cavity birefringence by laser induced surface defects. Applied Physics Letters, 2009, 95, .	1.5	25
72	Independent tuning of quantum dots in a photonic crystal cavity. Applied Physics Letters, 2009, 95, .	1.5	17

#	Article	IF	CITATIONS
73	Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity. Applied Physics Letters, 2009, 94, .	1.5	112