
Prakit Somta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2875213/publications.pdf Version: 2024-02-01

DDAKIT SOMTA

#	Article	IF	CITATIONS
1	Molecular genetic diversity of winged bean gene pool in Thailand assessed by SSR markers. Horticultural Plant Journal, 2022, 8, 81-88.	2.3	12
2	The First Genetic Linkage Map of Winged Bean [Psophocarpus tetragonolobus (L.) DC.] and QTL Mapping for Flower-, Pod-, and Seed-Related Traits. Plants, 2022, 11, 500.	1.6	5
3	A Class II KNOX Gene, KNAT7-1, Regulates Physical Seed Dormancy in Mungbean [Vigna radiata (L.) Wilczek]. Frontiers in Plant Science, 2022, 13, 852373.	1.7	11
4	RNA-Seq Reveals Waterlogging-Triggered Root Plasticity in Mungbean Associated with Ethylene and Jasmonic Acid Signal Integrators for Root Regeneration. Plants, 2022, 11, 930.	1.6	10
5	Marker-Assisted Backcross Breeding for Improving Bruchid (Callosobruchus spp.) Resistance in Mung Bean (Vigna radiata L.). Agronomy, 2022, 12, 1271.	1.3	3
6	A chromosomeâ€scale assembly of the black gram (<i>Vigna mungo</i>) genome. Molecular Ecology Resources, 2021, 21, 238-250.	2.2	33
7	Fine mapping of QTL conferring Cercospora leaf spot disease resistance in mungbean revealed TAF5 as candidate gene for the resistance. Theoretical and Applied Genetics, 2021, 134, 701-714.	1.8	16
8	Genetic diversity and structure of landrace of lablab (<i>Lablab purpureus</i> (L.) Sweet) cultivars in Thailand revealed by SSR markers. Breeding Science, 2021, 71, 176-183.	0.9	9
9	Identification and resistant characterization of legume sources against Meloidogyne incognita. Journal of Integrative Agriculture, 2021, 20, 168-177.	1.7	2
10	BADH1 is associated with fragrance in sorghum (Sorghum bicolor (L.) Moench) cultivar â€~Ambemohor'. Journal of Genetics, 2021, 100, 1.	0.4	4
11	<i>Macrophomina phaseolina</i> –host interface: Insights into an emerging dry root rot pathogen of mungbean and urdbean, and its mitigation strategies. Plant Pathology, 2021, 70, 1263-1275.	1.2	17
12	Genetic analysis of seed resistance to Callosobruchus chinensis and Callosobruchus maculatus in cowpea. Journal of Stored Products Research, 2021, 92, 101783.	1.2	1
13	is associated with fragrance in sorghum ((L.) Moench) cultivar 'Ambemohor'. Journal of Genetics, 2021, 100, .	0.4	2
14	Two tightly linked genes coding for NAD-dependent malic enzyme and dynamin-related protein are associated with resistance to Cercospora leaf spot disease in cowpea (Vigna unguiculata (L.) Walp.). Theoretical and Applied Genetics, 2020, 133, 395-407.	1.8	9
15	A second VrPGIP1 allele is associated with bruchid resistance (Callosobruchus spp.) in wild mungbean (Vigna radiata var. sublobata) accession ACC41. Molecular Genetics and Genomics, 2020, 295, 275-286.	1.0	18
16	The Genome and Transcriptome Analysis of the Vigna mungo Chloroplast. Plants, 2020, 9, 1247.	1.6	6
17	Mapping and Functional Characterization of Stigma Exposed 1, a DUF1005 Gene Controlling Petal and Stigma Cells in Mungbean (Vigna radiata). Frontiers in Plant Science, 2020, 11, 575922.	1.7	6
18	Same Locus for Non-shattering Seed Pod in Two Independently Domesticated Legumes, Vigna angularis and Vigna unguiculata. Frontiers in Genetics, 2020, 11, 748.	1.1	21

PRAKIT SOMTA

#	Article	IF	CITATIONS
19	Identification of QTLs for Domestication-Related Traits in Zombi Pea [Vigna vexillata (L.) A. Rich], a Lost Crop of Africa. Frontiers in Genetics, 2020, 11, 803.	1.1	12
20	QTL Mapping for Agronomic and Adaptive Traits Confirmed Pleiotropic Effect of mog Gene in Black Gram [Vigna mungo (L.) Hepper]. Frontiers in Genetics, 2020, 11, 635.	1.1	9
21	Candidate gene mapping reveals VrMLO12 (MLO Clade II) is associated with powdery mildew resistance in mungbean (Vigna radiata [L.] Wilczek). Plant Science, 2020, 298, 110594.	1.7	8
22	Narrowing Down a Major QTL Region Conferring Pod Fiber Contents in Yardlong Bean (Vigna) Tj ETQq0 0 0 rgB1	/Overlock 1.0	10 Tf 50 622

23	Genomic Approaches to Biotic Stresses. Compendium of Plant Genomes, 2020, , 133-167.	0.3	8
24	Classical Genetics and Traditional Breeding in Mungbean. Compendium of Plant Genomes, 2020, , 43-54.	0.3	10
25	Genome sequence of <i>Jatropha curcas</i> L., a nonâ€edible biodiesel plant, provides a resource to improve seedâ€related traits. Plant Biotechnology Journal, 2019, 17, 517-530.	4.1	56
26	Comparative Transcriptome Analysis of Waterlogging-Sensitive and Tolerant Zombi Pea (Vigna) Tj ETQq0 0 0 rgBT Plants, 2019, 8, 264.	/Overlock 1.6	210 Tf 50 4 26
27	Construction of a high density linkage map and genome dissection of bruchid resistance in zombi pea (Vigna vexillata (L.) A. Rich). Scientific Reports, 2019, 9, 11719.	1.6	15

28 Development of an SNP-based high-density linkage map and QTL analysis for bruchid (Callosobruchus) Tj ETQq0 0 0 rgBT /Overlock 10 T

29	Construction of genetic linkage map and genome dissection of domestication-related traits of moth bean (Vigna aconitifolia), a legume crop of arid areas. Molecular Genetics and Genomics, 2019, 294, 621-635.	1.0	31
30	Detection of quantitative trait loci for salt tolerance in zombi pea [Vigna vexillata (L.) A. Rich]. Euphytica, 2019, 215, 1.	0.6	6
31	The Genetics of Pandan-Like Fragrance, 2-Acetyl-1-Pyrroline, in Crops. Agrivita, 2019, 41, .	0.2	2
32	A new taxonomic treatment for some wild relatives of mungbean (Vigna radiata (L.) Wilcz.) based on their molecular phylogenetic relationships and morphological variations. Genetic Resources and Crop Evolution, 2018, 65, 1109-1121.	0.8	5
33	QTL analysis of domestication syndrome in zombi pea (Vigna vexillata), an underutilized legume crop. PLoS ONE, 2018, 13, e0200116.	1.1	20

 $_{34}$ Genetic Dissection of Azuki Bean Weevil (Callosobruchus chinensis L.) Resistance in Moth Bean (Vigna) Tj ETQq0 0.0 rgBT /Oyerlock 10

35	Genetics of resistance to Cercospora leaf spot disease caused by Cercospora canescens and Psuedocercospora cruenta in yardlong bean (Vigna unguiculata ssp. sesquipedalis) \$\$imes \$\$ × grain cowpea (V. unguiculata ssp. unguiculata) populations. Journal of Genetics, 2018, 97, 1451-1456.	0.4	10
36	Positive Impact of Similarity on Twice Single Seed Descent of Purification on Bambara Groundnut (Vigna subterranea L. Verdcourt). Agrivita, 2018, 40, .	0.2	0

PRAKIT	Somta

#	Article	IF	CITATIONS
37	Genetics of resistance to leaf spot disease caused by and in yardlong bean (ssp.) × grain cowpea (ssp.) populations. Journal of Genetics, 2018, 97, 1451-1456.	0.4	4
38	Genetic diversity and structure of the zombi pea (Vigna vexillata (L.) A. Rich) gene pool based on SSR marker analysis. Genetica, 2017, 145, 189-200.	0.5	23
39	Inheritance and a major quantitative trait locus of seed starch content in mungbean (Vigna radiata (L.)) Tj ETQq1	1 0.78431 0.6	4 _. rgBT /Ove
40	Novel Alleles of Two Tightly Linked Genes Encoding Polygalacturonase-Inhibiting Proteins (VrPGIP1) Tj ETQq0 0 0 Mungbean (Vigna radiata) Accession V2709. Frontiers in Plant Science, 2017, 8, 1692.	rgBT /Over 1.7	lock 10 Tf 5 41
41	Mapping of QTLs for Seed Phorbol Esters, a Toxic Chemical in Jatropha curcas (L.). Genes, 2017, 8, 205.	1.0	12
42	Novel Genetic Resources in the Genus Vigna Unveiled from Gene Bank Accessions. PLoS ONE, 2016, 11, e0147568.	1.1	74
43	Gene Mapping of a Mutant Mungbean (Vigna radiata L.) Using New Molecular Markers Suggests a Gene Encoding a YUC4-like Protein Regulates the Chasmogamous Flower Trait. Frontiers in Plant Science, 2016, 7, 830.	1.7	21
44	Co-localization of QTLs for pod fiber content and pod shattering in F2 and backcross populations between yardlong bean and wild cowpea. Molecular Breeding, 2016, 36, 1.	1.0	45
45	A gene encoding a polygalacturonase-inhibiting protein (PGIP) is a candidate gene for bruchid (Coleoptera: bruchidae) resistance in mungbean (Vigna radiata). Theoretical and Applied Genetics, 2016, 129, 1673-1683.	1.8	53
46	Identification of a major QTL for resistance to Cercospora leaf spot disease in cowpea (Vigna) Tj ETQq0 0 0 rgBT / spot in common bean (Phaseolus vulgaris L.). Euphytica, 2016, 209, 199-207.	Overlock 1 0.6	.0 Tf 50 387 12
47	De novo Transcriptome Analysis of Apical Meristem of Jatropha spp. Using 454 Pyrosequencing Platform, and Identification of SNP and EST-SSR Markers. Plant Molecular Biology Reporter, 2016, 34, 786-793.	1.0	9
48	Mapping QTL for bruchid resistance in rice bean (Vigna umbellata). Euphytica, 2016, 207, 135-147.	0.6	17
49	Development and Validation of EST-SSR Markers from the Transcriptome of Adzuki Bean (Vigna) Tj ETQq1 1 0.784	4314 rgBT 1.1	/Qverlock 10
50	A Homoploid Hybrid Between Wild Vigna Species Found in a Limestone Karst. Frontiers in Plant Science, 2015, 6, 1050.	1.7	13
51	Genetic diversity of the black gram [<i>Vigna mungo</i> (L.) Hepper] gene pool as revealed by SSR markers. Breeding Science, 2015, 65, 127-137.	0.9	40
52	A single base substitution in BADH/AMADH is responsible for fragrance in cucumber (Cucumis sativus) Tj ETQq0 C 1881-1892.) 0 rgBT /0 1.8	verlock 10 T 38
53	Genetic diversity and population structure of pencil yam (Vigna lanceolata) (Phaseoleae, Fabaceae), a wild herbaceous legume endemic to Australia, revealed by microsatellite markers. Botany, 2015, 93, 183-191.	0.5	1
54	Evaluation of Mungbean Genotypes Based on Yield Stability and Reaction to Mungbean Yellow Mosaic Virus Disease. Plant Pathology Journal, 2014, 30, 261-268.	0.7	25

PRAKIT SOMTA

#	Article	IF	CITATIONS
55	Mapping quantitative trait loci for yield-related traits in soybean (Glycine max L.). Breeding Science, 2014, 64, 282-290.	0.9	8
56	Genome sequence of mungbean and insights into evolution within Vigna species. Nature Communications, 2014, 5, 5443.	5.8	453
57	Identification and confirmation of quantitative trait loci controlling resistance to mungbean yellow mosaic disease in mungbean [Vigna radiata (L.) Wilczek]. Molecular Breeding, 2014, 34, 1497-1506.	1.0	32
58	QTL mapping for salt tolerance and domestication-related traits in Vigna marina subsp. oblonga, a halophytic species. Theoretical and Applied Genetics, 2014, 127, 691-702.	1.8	54
59	Detection of Genome Donor Species of Neglected Tetraploid Crop Vigna reflexo-pilosa (Créole Bean), and Genetic Structure of Diploid Species Based on Newly Developed EST-SSR Markers from Azuki Bean (Vigna angularis). PLoS ONE, 2014, 9, e104990.	1.1	44
60	Development of tetraploid plants from an interspecific hybrid between mungbean (Vigna radiata) and rice bean (Vigna umbellata). Journal of Crop Science and Biotechnology, 2013, 16, 45-51.	0.7	15
61	A single recessive gene controls fragrance in cucumber (Cucumis sativus L.). Journal of Genetics, 2013, 92, 147-149.	0.4	18
62	Gene discovery and functional marker development for fragrance in sorghum (Sorghum bicolor (L.)) Tj ETQq0 0 () rgBT /Ove	erlgck 10 Tf 5
63	QTL mapping of pod tenderness and total soluble solid in yardlong bean [Vigna unguiculata (L.) Walp. subsp. unguiculata cvgr. sesquipedalis]. Euphytica, 2013, 189, 217-223.	0.6	33
64	Quantitative trait locus mapping reveals conservation of major and minor loci for powdery mildew resistance in four sources of resistance in mungbean [Vigna radiata (L.) Wilczek]. Molecular Breeding, 2013, 32, 121-130.	1.0	25
65	Detection of quantitative trait loci for mungbean yellow mosaic India virus (MYMIV) resistance in mungbean (<i>Vigna radiata</i> (L.) Wilczek) in India and Pakistan. Breeding Science, 2013, 63, 367-373.	0.9	54
66	Genetic diversity and population structure of <i>Vigna exilis</i> and <i>Vigna grandiflora</i> (Phaseoleae, Fabaceae) from Thailand based on microsatellite variation. Botany, 2013, 91, 653-661.	0.5	4
67	Mapping of quantitative trait loci for phytic acid and phosphorus contents in seed and seedling of mungbean (<i>Vigna radiata</i> (L.) Wilczek). Breeding Science, 2012, 62, 87-92.	0.9	41
68	The genetics of domestication of yardlong bean, Vigna unguiculata (L.) Walp. ssp. unguiculata cvgr. sesquipedalis. Annals of Botany, 2012, 109, 1185-1200.	1.4	87
69	Mapping QTL conferring resistance to iron deficiency chlorosis in mungbean [Vigna radiata (L.) Wilczek]. Field Crops Research, 2012, 137, 230-236.	2.3	17

An SSR-based linkage map of yardlong bean (<i>Vigna unguiculata</i>(L.) Walp.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 142 Td (subsp.<i 78

71	Construction of a Genetic Linkage Map and Genetic Analysis of Domestication Related Traits in Mungbean (Vigna radiata). PLoS ONE, 2012, 7, e41304.	1.1	147
72	Identification of a new fragrance allele in soybean and development of its functional marker. Molecular Breeding, 2012, 29, 13-21.	1.0	31

PRAKIT SOMTA

#	Article	IF	CITATIONS
73	Quantitative trait loci mapping of Cercospora leaf spot resistance in mungbean, Vigna radiata (L.) Wilczek. Molecular Breeding, 2011, 28, 255-264.	1.0	70
74	A SNP in GmBADH2 gene associates with fragrance in vegetable soybean variety "Kaori―and SNAP marker development for the fragrance. Theoretical and Applied Genetics, 2011, 122, 533-541.	1.8	60
75	Mapping of quantitative trait loci controlling powdery mildew resistance in Mungbean (Vigna radiata) Tj ETQq1 1	0,784314	1 rgBT /Over
76	Molecular diversity assessment of AVRDC-The World Vegetable Center elite-parental mungbeans. Breeding Science, 2009, 59, 149-157.	0.9	19
77	Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek). BMC Plant Biology, 2009, 9, 137.	1.6	128
78	Development, characterization and cross-species amplification of mungbean (Vigna radiata) genic microsatellite markers. Conservation Genetics, 2009, 10, 1939-1943.	0.8	68
79	Genetics of the resistance to powdery mildew disease in mungbean (Vigna radiata (L.) Wilczek). Journal of Crop Science and Biotechnology, 2009, 12, 37-42.	0.7	16
80	Genetic variation in cultivated mungbean germplasm and its implication in breeding for high yield. Field Crops Research, 2009, 112, 260-266.	2.3	43
81	Microsatellite markers for mungbean developed from sequence database. Molecular Ecology Resources, 2009, 9, 862-864.	2.2	34
82	Mapping of quantitative trait loci for a new source of resistance to bruchids in the wild species Vigna nepalensis Tateishi & Maxted (Vigna subgenus Ceratotropis). Theoretical and Applied Genetics, 2008, 117, 621-628.	1.8	34
83	Characterization of new sources of mungbean (Vigna radiata (L.) Wilczek) resistance to bruchids, Callosobruchus spp. (Coleoptera: Bruchidae). Journal of Stored Products Research, 2008, 44, 316-321.	1.2	52
84	New microsatellite markers isolated from mungbean (<i>Vigna radiata</i> (L.) Wilczek). Molecular Ecology Resources, 2008, 8, 1155-1157.	2.2	69
85	Inheritance of seed resistance to bruchids in cultivated mungbean (Vigna radiata, L. Wilczek). Euphytica, 2007, 155, 47-55.	0.6	71
86	Title is missing!. ScienceAsia, 2007, 33(s1), 069.	0.2	31
87	Development of an interspecific Vigna linkage map between Vigna umbellata (Thunb.) Ohwi & Ohashi and V. nakashimae (Ohwi) Ohwi & Ohashi and its use in analysis of bruchid resistance and comparative genomics. Plant Breeding, 2006, 125, 77-84.	1.0	66
88	Characterization of Callosobruchus chinensis (L.) resistance in Vigna umbellata (Thunb.) Ohwi & Ohashi. Journal of Stored Products Research, 2006, 42, 313-327.	1.2	36
89	Thirty Years of Mungbean Genome Research: Where Do We Stand and What Have We Learned?. Frontiers in Plant Science, 0, 13, .	1.7	3