
Kiriakos Kotzabasis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2875114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Salt stress impact on the molecular structure and function of the photosynthetic apparatus—The protective role of polyamines. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 272-280.	1.0	214
2	Polyamines in the photosynthetic apparatus. Photosynthesis Research, 1993, 38, 83-88.	2.9	115
3	Effects of polyamines on the functionality of photosynthetic membrane in vivo and in vitro. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 1372-1382.	1.0	102
4	Ozone impact on the photosynthetic apparatus and the protective role of polyamines. Biochimica Et Biophysica Acta - General Subjects, 2003, 1621, 160-169.	2.4	100
5	Simulated solar irradiation with enhanced UV-B adjust plastid- and thylakoid-associated polyamine changes for UV-B protection. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1710, 24-33.	1.0	91
6	A Narrow-Bore HPLC Method for the Identification and Quantitation of Free, Conjugated, and Bound Polyamines. Analytical Biochemistry, 1993, 214, 484-489.	2.4	87
7	Evidence That Putrescine Modulates the Higher Plant Photosynthetic Proton Circuit. PLoS ONE, 2012, 7, e29864.	2.5	76
8	Bioenergetic strategy of microalgae for the biodegradation of phenolic compounds—Exogenously supplied energy and carbon sources adjust the level of biodegradation. Journal of Biotechnology, 2007, 129, 706-716.	3.8	67
9	A polyamine- and LHCII protease activity-based mechanism regulates the plasticity and adaptation status of the photosynthetic apparatus. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 261-271.	1.0	64
10	Bioenergetic changes in the microalgal photosynthetic apparatus by extremely high CO ₂ concentrations induce an intense biomass production. Physiologia Plantarum, 2008, 132, 338-349.	5.2	56
11	Influence of polyamine inhibitors on light-independent and light-dependent chlorophyll biosynthesis and on the photosynthetic rate. Journal of Photochemistry and Photobiology B: Biology, 1995, 28, 235-242.	3.8	54
12	Putrescine stimulates chemiosmotic ATP synthesis. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 821-828.	1.0	54
13	Remodeling of tobacco thylakoids by over-expression of maize plastidial transglutaminase. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1215-1222.	1.0	54
14	Putrescine, a fast-acting switch for tolerance against osmotic stress. Journal of Plant Physiology, 2014, 171, 48-51.	3.5	53
15	The regulatory role of polyamines in structure and functioning of the photosynthetic apparatus during photoadaptation. Journal of Photochemistry and Photobiology B: Biology, 1999, 50, 45-52.	3.8	51
16	Effects of ammonia from livestock farming on lichen photosynthesis. Environmental Pollution, 2010, 158, 2258-2265.	7.5	50
17	The involvement of LHCII-associated polyamines in the response of the photosynthetic apparatus to low temperature. Journal of Photochemistry and Photobiology B: Biology, 2006, 84, 181-188.	3.8	47
18	Methanol as alternative carbon source for quicker efficient production of the microalgae Chlorella minutissima: Role of the concentration and frequence of administration. Journal of Biotechnology, 1999, 70, 357-362.	3.8	42

#	Article	IF	CITATIONS
19	Fast and reversible response of thylakoid-associated polyamines during and after UV-B stress: a comparative study of the wild type and a mutant lacking chlorophyll b of unicellular green alga Scenedesmus obliquus. Planta, 2008, 228, 341-353.	3.2	40
20	Thylakoid-associated Polyamines Adjust the UV-B Sensitivity of the Photosynthetic Apparatus by Means of Light-harvesting Complex II Changes¶. Photochemistry and Photobiology, 2004, 80, 499.	2.5	39
21	The impact of high CO2 concentrations on the structure and function of the photosynthetic apparatus and the role of polyamines. Journal of Plant Physiology, 2004, 161, 715-724.	3.5	38
22	Light intensity affects RNA silencing of a transgene in Nicotiana benthamianaplants. BMC Plant Biology, 2010, 10, 220.	3.6	38
23	High Yields of Hydrogen Production Induced by Meta-Substituted Dichlorophenols Biodegradation from the Green Alga Scenedesmus obliquus. PLoS ONE, 2012, 7, e49037.	2.5	36
24	Silencing S-Adenosyl-L-Methionine Decarboxylase (SAMDC) in Nicotiana tabacum Points at a Polyamine-Dependent Trade-Off between Growth and Tolerance Responses. Frontiers in Plant Science, 2016, 7, 379.	3.6	35
25	Comparative biodegradation of all chlorinated phenols by the microalga Scenedesmus obliquus — The biodegradation strategy of microalgae. Journal of Biotechnology, 2019, 296, 61-68.	3.8	34
26	Changes in the biosynthesis and catabolism of polyamines in isolated plastids during chloroplast photodevelopment. Journal of Photochemistry and Photobiology B: Biology, 1996, 33, 163-170.	3.8	33
27	Do polyamines alter the sensitivity of lichens to nitrogen stress?. Ecotoxicology and Environmental Safety, 2009, 72, 1331-1336.	6.0	33
28	Potassium deficiency, a "smart―cellular switch for sustained high yield hydrogen production by the green alga Scenedesmus obliquus. International Journal of Hydrogen Energy, 2014, 39, 19452-19464.	7.1	31
29	Thylakoid-associated Polyamines Adjust the UV-B Sensitivity of the Photosynthetic Apparatus by Means of Light-harvesting Complex II Changes¶. Photochemistry and Photobiology, 2004, 80, 499.	2.5	31
30	Inductive and resonance effects of substituents adjust the microalgal biodegradation of toxical phenolic compounds. Journal of Biotechnology, 2008, 135, 366-373.	3.8	30
31	Bioenergetic Strategy for the Biodegradation of p-Cresol by the Unicellular Green Alga Scenedesmus obliquus. PLoS ONE, 2012, 7, e51852.	2.5	30
32	Light-dependent induction of strongly increased microalgal growth by methanol. Biochimica Et Biophysica Acta - General Subjects, 2002, 1573, 189-198.	2.4	29
33	AGGREGATION OF MONOVINYL- and DIVINYL-PROTOCHLOROPHYLLIDE IN ORGANICSOLVENTS. Photochemistry and Photobiology, 1990, 52, 95-101.	2.5	28
34	Polyamines in chemiosmosis in vivo: A cunning mechanism for the regulation of ATP synthesis during growth and stress. Frontiers in Plant Science, 2014, 5, 71.	3.6	28
35	Polyamine Production in Lichens Under Metal Pollution Stress. Journal of Atmospheric Chemistry, 2004, 49, 303-315.	3.2	27
36	Photosynthetic performance of lichen transplants as early indicator of climatic stress along an altitudinal gradient in the arid Mediterranean area. Climatic Change, 2011, 107, 305-328.	3.6	27

#	Article	IF	CITATIONS
37	Characterization of spermidine and spermine synthases in Lotus japonicus: induction and spatial organization of polyamine biosynthesis in nitrogen fixing nodules. Planta, 2008, 228, 37-49.	3.2	26
38	"Rational―Management of Dichlorophenols Biodegradation by the Microalga Scenedesmus obliquus. PLoS ONE, 2013, 8, e61682.	2.5	26
39	Microalgal photosynthesis induces alkalization of aquatic environment as a result of H+ uptake independently from CO2 concentration – New perspectives for environmental applications. Journal of Environmental Management, 2021, 289, 112546.	7.8	25
40	Occurrence of protochlorophyll and its phototransformation to chlorophyll in mutant C-2A' of Scenedesmus obliquus. Physiologia Plantarum, 1989, 75, 221-226.	5.2	24
41	Free, Conjugated and Bound Polyamines during the Ceil Cycle in Synchronized Cultures of Scenedesmus obliquus. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1994, 49, 181-185.	1.4	24
42	Polyamines stimulate non-photochemical quenching of chlorophyll a fluorescence in Scenedesmus obliquus. Photosynthesis Research, 2011, 107, 169-175.	2.9	24
43	Influence of the Habitat Altitude on the (Proto)Hypericin and (Proto)Pseudohypericin Levels of <i>Hypericum</i> Plants from Crete. Planta Medica, 2008, 74, 1496-1503.	1.3	23
44	Polyamines in Cell Walls of Chlorococcalean Microalgae. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2014, 69, 75-80.	1.4	23
45	Changes in the polyamine content of plastidal membranes in light- and dark-grown wildtype and pigment mutants of the unicellular green alga Scenedesmus obliquus and their possible role in chloroplast photodevelopment. Journal of Photochemistry and Photobiology B: Biology, 1996, 36, 293-299.	3.8	22
46	The Genetic Reprogramming of Polyamine Homeostasis During the Functional Assembly, Maturation, and Senescence-Specific Decline of the Photosynthetic Apparatus in Hordeum vulgare. Journal of Plant Growth Regulation, 2014, 33, 77-90.	5.1	22
47	The influence of exogenously supplied spermine on protochlorophyllide and chlorophyll biosynthesis. Journal of Photochemistry and Photobiology B: Biology, 1994, 23, 201-206.	3.8	21
48	The Microalga Chlorella vulgaris as a Natural Bioenergetic System for Effective CO2 Mitigation—New Perspectives against Global Warming. Symmetry, 2021, 13, 997.	2.2	20
49	Changes in the LHCII-mediated energy utilization and dissipation adjust the methanol-induced biomass increase. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 948-955.	1.0	19
50	Combinational system for biodegradation of olive oil mill wastewater phenolics and high yield of bio-hydrogen production. Journal of Biotechnology, 2019, 306, 47-53.	3.8	19
51	Role of Plastid Transglutaminase in LHCII Polyamination and Thylakoid Electron and Proton Flow. PLoS ONE, 2012, 7, e41979.	2.5	17
52	Isolation and Characterization of 3 Protochlorophyllides from Pigment Mutant C-2 A′ of Scenedesmus obliquus. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1986, 41, 1001-1003.	1.4	16
53	Biosynthesis of chlorophyll b in pigment mutant C-2A' of Scenedesmus obliquus. Physiologia Plantarum, 1989, 76, 474-478.	5.2	16
54	A Role for Chloroplastâ€Associated Polyamines?*. Botanica Acta, 1996, 109, 5-7.	1.6	16

#	Article	IF	CITATIONS
55	Polyamines: Α bioenergetic smart switch for plant protection and development. Journal of Plant Physiology, 2022, 270, 153618.	3.5	16
56	A cell-based model for the photoacclimation and CO2-acclimation of the photosynthetic apparatus. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1708, 250-261.	1.0	15
57	Polyamines induce aggregation of LHC II and quenching of fluorescence in vitro. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 735-743.	1.0	15
58	Photosynthetic Characteristics of Three Strains of Cyanobacteria Grown under Low-or High-C02 Conditions. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1996, 51, 40-46.	1.4	14
59	Blue Light Signaling Chains in Phycomyces: Phototransduction of Carotenogenesis and Morphogenesis Involves Distinct Protein Kinase/Phosphatase Elements. Fungal Genetics and Biology, 1999, 28, 201-213.	2.1	14
60	The Over-expression of the Plastidial Transglutaminase from Maize in Arabidopsis Increases the Activation Threshold of Photoprotection. Frontiers in Plant Science, 2016, 7, 635.	3.6	14
61	Modeling the dynamic modulation of light energy in photosynthetic algae. Journal of Theoretical Biology, 2012, 300, 254-264.	1.7	12
62	Lichen Symbiosis: Nature's High Yielding Machines for Induced Hydrogen Production. PLoS ONE, 2015, 10, e0121325.	2.5	12
63	Stimulation of protochlorophyllide oxidoreductase by thioredoxin. Journal of Photochemistry and Photobiology B: Biology, 1989, 3, 333-339.	3.8	11
64	Differential Changes in the Photosynthetic Pigments and Polyamine Content during Photoadaptation and Photoinhibition in the Unicellular Green Alga Scenedesmus obliquus. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1998, 53, 833-840.	1.4	11
65	DCL3 and DCL4 are likely involved in the light intensity - RNA silencing cross talk in <i>Nicotiana benthamiana</i> . Plant Signaling and Behavior, 2011, 6, 1180-1182.	2.4	11
66	Bioenergetic reprogramming plasticity under nitrogen depletion by the unicellular green alga Scenedesmus obliquus. Planta, 2018, 247, 679-692.	3.2	11
67	Methanol as alternative carbon source for quicker efficient production of the microalgae Chlorella minutissima: Role of the concentration and frequence of administration. Progress in Industrial Microbiology, 1999, 35, 357-362.	0.0	10
68	Thylakoid-associated Polyamines Adjust the UV-B Sensitivity of the Photosynthetic Apparatus by Means of Light-harvesting Complex II Changes¶. Photochemistry and Photobiology, 2004, 80, 499.	2.5	10
69	Evidence for the Presence of Chlorophyllide b in the Green Alga <i>Scenedesmus obliquus in vivo</i> . Botanica Acta, 1989, 102, 173-177.	1.6	9
70	Bioenergetic strategy of microalgae for the biodegradation of tyrosol and hydroxytyrosol. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2017, 72, 227-236.	1.4	9
71	Novel chlorophyllides in pigment mutant C-2a? of Scenedesmus obliquus. Die Naturwissenschaften, 1986, 73, 681-682.	1.6	8
72	Temperature inducible protochlorophyllide reduction in darkness in a pigment mutant of Scenedesmus obliquus. Physiologia Plantarum, 1987, 69, 29-34.	5.2	8

#	Article	IF	CITATIONS
73	The inhibitory effect of 4,5-dioxovalerate on 5-aminolevulinate dehydratase and its implication in the regulation of light-dependent chlorophyll formation in pigment mutant C-2A′ of Scenedesmus obliquus. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 977, 309-314.	1.0	8
74	Characterization of the photoreceptor(s) responsible for the regulation of the intracellular polyamine level and the putative participation of heterotrimeric G-proteins in the signal transduction chain. Journal of Photochemistry and Photobiology B: Biology, 1999, 50, 38-44.	3.8	8
75	Influence of the Developmental Stage on the (Proto)-Hypericin and (Proto)Pseudohypericin Levels of <i>Hypericum</i> Plants from Crete. Planta Medica, 2007, 73, 1309-1315.	1.3	8
76	Spermine and lutein quench chlorophyll fluorescence in isolated PSII antenna complexes. Journal of Plant Physiology, 2015, 183, 108-113.	3.5	8
77	Could structural similarity of specific domains between animal globins and plant antenna proteins provide hints important for the photoprotection mechanism?. Journal of Theoretical Biology, 2015, 364, 71-79.	1.7	8
78	The Influence of 5-Aminolevulinic Acid on Protochlorophyllide and Protochlorophyll Accumulation in Dark-Grown Scenedesmus. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1990, 45, 71-73.	1.4	7
79	A comparative approach towards thylakoid membrane proteome analysis of unicellular green alga Scenedesmus obliquus. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2271-2279.	2.6	7
80	Involvement of G Proteins in the Mycelial Photoresponses of Phycomyces¶. Photochemistry and Photobiology, 2004, 79, 360.	2.5	7
81	Chemical Bonding of Chlorophylls and Plant Aminic Axial Ligands Impact Harvesting of Visible Light and Quenching of Fluorescence. Photochemistry and Photobiology, 2012, 88, 98-106.	2.5	5
82	Incorporation of photoreduced protochlorophyll into reaction centres. Journal of Photochemistry and Photobiology B: Biology, 1991, 8, 255-262.	3.8	4
83	The use of biochemical, sensorial and chromaticity attributes as indicators of postmortem changes in commercial-size, cultured red porgy Pagrus pagrus, stored on ice. Aquaculture Research, 2011, 42, 341-350.	1.8	4
84	Microalgae strategy in anoxic atmospheres with various CO2 concentrations $\hat{a} \in \mathbb{C}$ Environmental and (astro)biotechnological perspectives. Environmental and Experimental Botany, 2021, 187, 104474.	4.2	4
85	Temperature dependent reduction of protochlorophyllide in darkness followed by the assembly of active photosystems in pigment mutant C-2A' of Scenedesmus obliquus. Physiologia Plantarum, 1990, 78, 635-639.	5.2	3
86	Thylakoidâ€associated Polyamines Adjust the UVâ€B Sensitivity of the Photosynthetic Apparatus by Means of Lightâ€harvesting Complex II Changes [¶] . Photochemistry and Photobiology, 2004, 80, 499-506.	2.5	3
87	Lichen as Micro-Ecosystem: Extremophilic Behavior with Astrobiotechnological Applications. Astrobiology, 2018, 18, 1528-1542.	3.0	3
88	Influence of acid soil on nodule numbers in relation to polyamine and tannin concentrations in roots of Phaseolus vulgaris. Biology and Fertility of Soils, 1995, 20, 249-252.	4.3	2
89	Spermine is a potent modulator of proton transport through LHCII. Journal of Plant Physiology, 2015, 177, 44-50.	3.5	2
90	Exogenous induction of thermogenesis in Arum concinnatum by salicylic acid. Functional Plant Biology, 2018, 45, 1195.	2.1	2

#	Article	IF	CITATIONS
91	Microphytobenthic response to organic matter enrichment: Does the same stressor lead to identical communities?. Regional Studies in Marine Science, 2019, 29, 100682.	0.7	2
92	Hydrogen gas as a central on-off functional switch of reversible metabolic arrest – New perspectives for biotechnological applications. Journal of Biotechnology, 2021, 335, 9-18.	3.8	2
93	Solving Nuisance Cyanobacteria Eutrophication Through Biotechnology. Applied Sciences (Switzerland), 2019, 9, 2566.	2.5	1
94	The Photoreduction of Protochlorophyll(IDE) in Scenedesmus and Barley (Hordeum Vulgare). , 1992, , 205-210.		1
95	The Regulatory Role of Polyamines on the Structural and Functional Photoadaptation of the Photosynthetic Apparatus. , 1999, , 283-286.		1
96	Biotechnology under extreme conditions: Lichens after extreme UVB radiation and extreme temperatures produce large amounts of hydrogen. Journal of Biotechnology, 2021, 342, 128-138.	3.8	1
97	Influence of Calcium on Formation and Reduction of Protochlorophyllide in the Pigment Mutant C-2A′ of <italic>Scenedesmus obliquus</italic> . Plant and Cell Physiology, 0, , .	3.1	0
98	Involvement of G Proteins in the Mycelial Photoresponses of <i>Phycomyces</i> [¶] . Photochemistry and Photobiology, 2004, 79, 360-371.	2.5	0
99	Photobiological Control of Crop Production and Plant Diseases. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2008, 63, 113-123.	1.4	0
100	Do genetic diversity patterns of soil ammonia-oxidizing microorganisms (AOM) match the habitat types of the NATURA2000 scheme?. Journal of Soils and Sediments, 2019, 19, 381-392.	3.0	0
101	Transglutaminase is Involved in the Remodeling of Tobacco Thylakoids. , O, , .		0
102	Diversity of the Pathways from Protochlorophyllides to Chlorophylls A and B. , 1990, , 2787-2790.		0
103	Intermediates, Catalytic Components and Light and Dark Regulation of ALA and Chlorophyll Formation in the Green Alga Scenedesmus. , 1990, , 3081-3084.		0
104	Temperature dependent reduction of protochlorophyllide in darkness followed by the assembly of active photosystems in pigment mutant C-2A' of Scenedesmus obliquus. Physiologia Plantarum, 1990, 78, 635-639.	5.2	0
105	New Aspects of Biosynthesis of Chlorophylls from Protochlorophyllides in Scenedesmus. , 1991, , 147-152.		0
106	The Regulation of Protochlorophyll Synthesis and its Physiological Role. , 1992, , 211-215.		0
107	Changes in the Biosynthesis and Catabolism of the Polyamines in Isolated Plastids during the Chloroplast Photodevelopment. , 1995, , 2873-2876.		0
108	Regulatory Effects of Polyamines on Chloroplast Development. , 1998, , 1979-1982.		0

#	Article	IF	CITATIONS
109	Alterations in the Plastid Membrane-Associated Polyamines during Chloroplast Photodevelopment. , 1999, , 287-290.		0