Suobo Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2875105/publications.pdf

Version: 2024-02-01

185998 174990 2,886 67 28 52 h-index citations g-index papers 68 68 68 2495 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel Hydroxide-Conducting Polyelectrolyte Composed of an Poly(arylene ether sulfone) Containing Pendant Quaternary Guanidinium Groups for Alkaline Fuel Cell Applications. Macromolecules, 2010, 43, 3890-3896.	2.2	408
2	Synthesis of Soluble Poly(arylene ether sulfone) Ionomers with Pendant Quaternary Ammonium Groups for Anion Exchange Membranes. Macromolecules, 2009, 42, 8711-8717.	2.2	206
3	A novel guanidinium grafted poly(aryl ether sulfone) for high-performance hydroxide exchange membranes. Chemical Communications, 2010, 46, 7495.	2.2	201
4	Polyamide thin film composite membranes prepared from isomeric biphenyl tetraacyl chloride and m-phenylenediamine. Journal of Membrane Science, 2008, 315, 20-27.	4.1	114
5	High- $\langle i \rangle \hat{l}^e \langle j \rangle$ polymers of intrinsic microporosity: a new class of high temperature and low loss dielectrics for printed electronics. Materials Horizons, 2020, 7, 592-597.	6.4	87
6	Preparation and properties of anion exchange membranes with exceptional alkaline stable polymer backbone and cation groups. Journal of Membrane Science, 2020, 596, 117720.	4.1	84
7	Synthesis of novel guanidinium-based anion-exchange membranes with controlled microblock structures. Journal of Membrane Science, 2017, 537, 151-159.	4.1	80
8	Fixation of carbon dioxide into aliphatic polycarbonate, cobalt porphyrin catalyzed regioâ€specific poly(propylene carbonate) with high molecular weight. Journal of Polymer Science Part A, 2008, 46, 5959-5967.	2.5	79
9	Functional microporous polyimides based on sulfonated binaphthalene dianhydride for uptake and separation of carbon dioxide and vapors. Journal of Materials Chemistry A, 2013, 1, 10368.	5.2	79
10	Bioinspired superhydrophilic-hydrophobic integrated surface with conical pattern-shape for self-driven fog collection. Journal of Colloid and Interface Science, 2018, 530, 274-281.	5.0	74
11	The effective synthesis of propylene carbonate catalyzed by silica-supported hexaalkylguanidinium chloride. New Journal of Chemistry, 2005, 29, 1199.	1.4	72
12	Pyrrolidinium-functionalized poly(arylene ether sulfone)s for anion exchange membranes: Using densely concentrated ionic groups and block design to improve membrane performance. Journal of Membrane Science, 2017, 535, 301-311.	4.1	71
13	Sulfonated Poly(arylene-co-naphthalimide)s Synthesized by Copolymerization of Primarily Sulfonated Monomer and Fluorinated Naphthalimide Dichlorides as Novel Polymers for Proton Exchange Membranes. Macromolecules, 2006, 39, 6425-6432.	2.2	65
14	Synthesis and properties of novel polyimides from sulfonated binaphthalene dianhydride for proton exchange membranes. Journal of Polymer Science Part A, 2008, 46, 2820-2832.	2.5	59
15	Bi-guanidinium-based crosslinked anion exchange membranes: Synthesis, characterization, and properties. Journal of Membrane Science, 2020, 601, 117923.	4.1	50
16	The effect of polymer backbones and cation functional groups on properties of anion exchange membranes for fuel cells. Journal of Membrane Science, 2020, 603, 118025.	4.1	49
17	Synthesis, properties, and gas permeation performance of cardo poly(arylene ether sulfone)s containing phthalimide side groups. Journal of Applied Polymer Science, 2007, 106, 2808-2816.	1.3	47
18	High-performance functionalized polymer of intrinsic microporosity (PIM) composite membranes with thin and stable interconnected layer for organic solvent nanofiltration. Journal of Membrane Science, 2019, 591, 117347.	4.1	47

#	Article	IF	CITATIONS
19	Preparation of a highly permeable nanofiltration membrane using a novel acyl chloride monomer with -PO(Cl)2 group. Desalination, 2018, 431, 56-65.	4.0	46
20	Facile synthesis and the properties of novel cardo poly(arylene ether sulfone)s with pendent cycloaminium side chains as anion exchange membranes. Polymer Chemistry, 2017, 8, 4207-4219.	1.9	45
21	A Microporous Polymer with Suspended Cations for Anion Exchange Membrane Fuel Cells. Macromolecules, 2020, 53, 10998-11008.	2.2	43
22	Janus porous membrane with conical nanoneedle channel for rapid unidirectional water transport. Chemical Communications, 2018, 54, 10954-10957.	2.2	42
23	Mixed-matrix membranes incorporated with porous shape-persistent organic cages for gas separation. Journal of Colloid and Interface Science, 2017, 490, 29-36.	5.0	40
24	Facile Preparation of Highly Alkaline Stable Poly(arylene–imidazolium) Anion Exchange Membranes through an Ionized Monomer Strategy. Macromolecules, 2021, 54, 2202-2212.	2.2	38
25	Synthesis and characterization of a novel poly(arylene ether sulfone) containing pendent imidazole groups for high temperature proton exchange membranes. Journal of Materials Chemistry, 2012, 22, 22706.	6.7	36
26	Preparation of high water flux and antifouling RO membranes using a novel diacyl chloride monomer with a phosphonate group. Journal of Membrane Science, 2017, 536, 98-107.	4.1	32
27	Alkaline polymers of intrinsic microporosity: high-conduction and low-loss anhydrous proton exchange membranes for energy conversion. Journal of Materials Chemistry A, 2021, 9, 3925-3930.	5.2	32
28	Design, synthesis and characterization of anion exchange membranes containing guanidinium salts with ultrahigh dimensional stability. Journal of Membrane Science, 2022, 643, 120008.	4.1	32
29	Phenolphthaleinâ€based cardo poly(arylene ether sulfone): Preparation and application to separation membranes. Journal of Applied Polymer Science, 2013, 128, 1-12.	1.3	30
30	Triphenylamine-containing microporous organic copolymers for hydrocarbons/water separation. RSC Advances, 2014, 4, 5568.	1.7	30
31	Controllable Janus porous membrane with liquids manipulation for diverse intelligent energy-free applications. Journal of Membrane Science, 2020, 601, 117954.	4.1	30
32	An integrated Janus porous membrane with controllable under-oil directional water transport and fluid gating property for oil/water emulsion separation. Journal of Membrane Science, 2021, 627, 119229.	4.1	28
33	Double-responsive polyampholyte as a nanoparticle stabilizer: application to reversible dispersion of gold nanoparticles. Journal of Materials Chemistry, 2010, 20, 4379.	6.7	27
34	Preparation and characterization of side-chain poly(aryl ether ketone) anion exchange membranes by superacid-catalyzed reaction. Polymer, 2021, 222, 123639.	1.8	26
35	Synthesis, characterization and gas transport properties of novel poly(amine-imide)s containing tetraphenylmethane pendant groups. Journal of Materials Chemistry A, 2014, 2, 9835-9843.	5.2	25
36	A liquid-based Janus porous membrane for convenient liquid–liquid extraction and immiscible oil/water separation. Chemical Communications, 2019, 55, 14486-14489.	2.2	23

#	Article	IF	CITATIONS
37	A chemical-induced crystallization strategy to fabricate poly(ether ether ketone) asymmetric membranes for organic solvent nanofiltration. Journal of Membrane Science, 2021, 620, 118899.	4.1	23
38	Copolymerization of carbon dioxide and propylene oxide under inorganic oxide supported rare earth ternary catalyst. Journal of Polymer Science Part A, 2011, 49, 3797-3804.	2.5	22
39	Preparation and characterization of an antibacterial ultrafiltration membrane with N-chloramine functional groups. Journal of Colloid and Interface Science, 2017, 496, 391-400.	5.0	22
40	Highly stable polysulfone anion exchange membranes incorporated with bulky alkyl substituted guanidinium cations. Molecular Systems Design and Engineering, 2019, 4, 1039-1047.	1.7	21
41	Preparation and characterization of positively charged composite nanofiltration membranes by coating poly(ether ether ketone) containing quaternary ammonium groups on polysulfone ultrafiltration membranes. Journal of Applied Polymer Science, 2013, 127, 1601-1608.	1.3	18
42	Controlled Superacid-Catalyzed Self-Cross-Linked Polymer of Intrinsic Microporosity for High-Performance CO ₂ Separation. Macromolecules, 2020, 53, 7988-7996.	2.2	18
43	Microwave-assisted synthesis of high-molecular-weight poly(ether imide)s by phase-transfer catalysis. Journal of Applied Polymer Science, 2004, 92, 2415-2419.	1.3	17
44	Chlorine-resistant sulfochlorinated and sulfonated polysulfone for reverse osmosis membranes by coating method. Journal of Colloid and Interface Science, 2019, 541, 434-443.	5.0	17
45	Patterned, anti-fouling membrane with controllable wettability for ultrafast oil/water separation and liquid–liquid extraction. Chemical Communications, 2020, 56, 12045-12048.	2.2	17
46	Synthesis and characterization of soluble poly(amideâ€imide)s bearing triethylamine sulfonate groups as gas dehumidification membrane material. Journal of Applied Polymer Science, 2007, 106, 3179-3184.	1.3	16
47	Preparation and characterization of novel positively charged copolymer composite membranes for nanofiltration. RSC Advances, 2014, 4, 22625.	1.7	16
48	Preparation and characterization of porous polyelectrolyte complex membranes for nanofiltration. RSC Advances, 2015, 5, 3567-3573.	1.7	16
49	A Simple Self-Cross-Linking Strategy for Double-Layered Proton Exchange Membranes with Improved Methanol Resistance and Good Electrochemical Properties for Passive Direct Methanol Fuel Cells. ACS Applied Energy Materials, 2018, 1, 941-947.	2.5	16
50	Nanofiber-based poly(aryl ether sulfone) containing guanidinium groups as novel anion-exchange membranes. Journal of Polymer Research, 2013, 20, 1.	1.2	15
51	High-efficiency Pd nanoparticles loaded porous organic polymers membrane catalytic reactors. Chemical Communications, 2021, 57, 3131-3134.	2.2	14
52	Nanofiber mats electrospun from composite proton exchange membranes prepared from poly(aryl) Tj ETQq0 0	0 rgBT /Ον	erlack 10 Tf 5
53	Surface modification of polyamide reverses osmosis membrane by phosphonic acid group with improved performance. Journal of Applied Polymer Science, 2019, 136, 46931.	1.3	13
54	Synthesis and properties of novel regioirregular polyimides from easily synthesized asymmetrical dichlorophthalimide monomers. Journal of Polymer Science Part A, 2007, 45, 3550-3561.	2.5	12

#	Article	IF	CITATIONS
55	A highly stable membrane for vanadium flow batteries (VFBs) enabled by the selective degradation of ionic side chains. Journal of Materials Chemistry A, 2022, 10, 762-771.	5.2	12
56	Antifouling ultrafiltration membrane fabricated from poly (arylene ether ketone) bearing hydrophilic hydroxyl groups. Journal of Applied Polymer Science, 2016, 133, .	1.3	11
57	Synthesis of Fluorinated Poly(phenyl-alkane)s of Intrinsic Microporosity by Regioselective Aldehyde (A ₂) + Aromatics (B ₂) Friedel–Crafts Polycondensation. Macromolecules, 2021, 54, 6543-6551.	2.2	11
58	Nano-Interlayers Fabricated via Interfacial Azo-Coupling Polymerization: Effect of Pore Properties of Interlayers on Overall Performance of Thin-Film Composite for Nanofiltration. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59329-59340.	4.0	11
59	Thin film composite nanofiltration membranes fabricated from quaternized poly(ether ether ketone) with crosslinkable moiety using a benign solvent. Journal of Colloid and Interface Science, 2016, 463, 332-341.	5.0	10
60	Preparation and characterization of sulfonated poly(aryleneâ€∢i>coà€naphthalimide)s for use as proton exchange membranes. Journal of Applied Polymer Science, 2010, 118, 3187-3196.	1.3	9
61	Preparation of antifouling ultrafiltration membranes from copolymers of polysulfone and zwitterionic poly(arylene ether sulfone)s. Chinese Journal of Chemical Engineering, 2022, 49, 100-110.	1.7	8
62	Synthesis, structure and ethylene polymerization of group 4 complexes with phosphinoamide ligands. Applied Organometallic Chemistry, 2006, 20, 138-141.	1.7	7
63	High flexible ether-free semi-crystalline fuel cell membranes: Molecular-level design, assembly structure and properties. Journal of Membrane Science, 2021, 627, 119240.	4.1	6
64	A Novel Material for Highâ€Performance Li–O ₂ Battery Separator: Polyetherketone Nanofiber Membrane. Small, 2022, 18, e2201470.	5.2	6
65	Synthesis and gas permeability of novel fluorinated poly(phenylene-co-naphthalimide)s. Journal of Applied Polymer Science, 2007, 104, 2395-2402.	1.3	5
66	Correlation of the polymer hydrophilicity and membrane fabrication process on the properties of asymmetric membranes in a vaporâ€induced phaseâ€inversion process. Journal of Applied Polymer Science, 2017, 134, .	1.3	5
67	Synthesis and Properties of Novel Fluorinated Poly(phenylene-co-imide)s. Macromolecular Chemistry and Physics, 2007, 208, 307-315.	1.1	2