RadosÅ,aw Michalski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/287482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HPLC-based monitoring of products formed from hydroethidine-based fluorogenic probes — The ultimate approach for intra- and extracellular superoxide detection. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 739-744.	1.1	96
2	Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products. Antioxidants and Redox Signaling, 2018, 28, 1416-1432.	2.5	70
3	High-throughput Assays for Superoxide and Hydrogen Peroxide. Journal of Biological Chemistry, 2014, 289, 16176-16189.	1.6	63
4	Real-time Measurements of Amino Acid and Protein Hydroperoxides Using Coumarin Boronic Acid. Journal of Biological Chemistry, 2014, 289, 22536-22553.	1.6	61
5	Toward selective detection of reactive oxygen and nitrogen species with the use of fluorogenic probes – Limitations, progress, and perspectives. Pharmacological Reports, 2015, 67, 756-764.	1.5	54
6	On the use of fluorescence lifetime imaging and dihydroethidium to detect superoxide in intact animals and ex vivo tissues: A reassessment. Free Radical Biology and Medicine, 2014, 67, 278-284.	1.3	49
7	Boronate-Based Probes for Biological Oxidants: A Novel Class of Molecular Tools for Redox Biology. Frontiers in Chemistry, 2020, 8, 580899.	1.8	48
8	Hydropropidine: A novel, cell-impermeant fluorogenic probe for detecting extracellular superoxide. Free Radical Biology and Medicine, 2013, 54, 135-147.	1.3	42
9	Characterization of Fluorescein-Based Monoboronate Probe and Its Application to the Detection of Peroxynitrite in Endothelial Cells Treated with Doxorubicin. Chemical Research in Toxicology, 2016, 29, 735-746.	1.7	37
10	Fluorescent probes for the detection of nitroxyl (HNO). Free Radical Biology and Medicine, 2018, 128, 69-83.	1.3	29
11	Naphthoylenebenzimidazolone dyes as electron transfer photosensitizers for iodonium salt induced cationic photopolymerizations. Dyes and Pigments, 2012, 95, 252-259.	2.0	26
12	Recent Developments in the Probes and Assays for Measurement of the Activity of NADPH Oxidases. Cell Biochemistry and Biophysics, 2017, 75, 335-349.	0.9	24
13	Selective, stoichiometric and fast-response fluorescent probe based on 7-nitrobenz-2-oxa-1,3-diazole fluorophore for hypochlorous acid detection. Dyes and Pigments, 2021, 193, 109563.	2.0	23
14	Dihalide and Pseudohalide Radical Anions as Oxidizing Agents in Nonaqueous Solvents. Journal of Physical Chemistry A, 2010, 114, 861-866.	1.1	21
15	Radicals and Radical Ions Derived from Indole, Indole-3-carbinol and Diindolylmethane. Journal of Physical Chemistry A, 2010, 114, 6787-6794.	1.1	16
16	A kinetic study on the reactivity of azanone (HNO) toward its selected scavengers: Insight into its chemistry and detection. Nitric Oxide - Biology and Chemistry, 2017, 69, 61-68.	1.2	15
17	Oxidation of ethidium-based probes by biological radicals: mechanism, kinetics and implications for the detection of superoxide. Scientific Reports, 2020, 10, 18626.	1.6	14
18	On the chemical reactivity of tricyanofuran(TCF)-based near-infrared fluorescent redox probes – Effects of glutathione on the probe response and product fluorescence. Dyes and Pigments, 2021, 192, 109405.	2.0	13

RadosÅ,aw Michalski

#	Article	IF	CITATIONS
19	Decomposition of Piloty's acid derivatives – Toward the understanding of factors controlling HNO release. Archives of Biochemistry and Biophysics, 2019, 661, 132-144.	1.4	11
20	Synthesis and application of dyes derived from benz[<i>cd</i>]indolâ€2(1 <i>H</i>)â€one as visibleâ€lightâ€absorbing polymerisation photoinitiators. Coloration Technology, 2016, 132, 320-326.	0.7	9
21	Fluorescent probes for monitoring myeloperoxidase-derived hypochlorous acid: a comparative study. Scientific Reports, 2022, 12, .	1.6	8
22	Mechanistic Aspects of Radiation-Induced Oligomerization of 3,4-Ethylenedioxythiophene in Ionic Liquids. Journal of Physical Chemistry A, 2010, 114, 11552-11559.	1.1	7
23	Detection and identification of oxidants formed during [•] NO/O ₂ ^{•–} reaction: A multi-well plate CW-EPR spectroscopy combined with HPLC analyses. Free Radical Research, 2014, 48, 478-486.	1.5	6
24	Kinetic Study on the Reactivity of Azanone (HNO) toward Cyclic C-Nucleophiles. International Journal of Molecular Sciences, 2021, 22, 12982.	1.8	6
25	Dyes derived from benzo[a]phenoxazine - synthesis, spectroscopic properties, and potential application as sensors forl-cysteine. Coloration Technology, 2017, 133, 145-157.	0.7	5
26	Kinetics of Azanone (HNO) Reactions with Thiols: Effect of pH. Cell Biochemistry and Biophysics, 2021, 79, 845-856.	0.9	4
27	Benzothiazine Dyes/2,4,6-Tris(trichloromethyl)-1,3,5-triazine as a New Visible Two-Component Photoinitiator System. International Journal of Photoenergy, 2012, 2012, 1-8.	1.4	2
28	The Chemistry of HNO: Mechanisms and Reaction Kinetics. Frontiers in Chemistry, 0, 10, .	1.8	2