Arimasa Matsumoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2874604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chiral Dinuclear Eu III , Tb III , and Y III Complexes Supported by P â€5tereogenic Linear Tetraphosphine Tetraoxide. Chemistry - A European Journal, 2022, 28, .	3.3	3
2	Asymmetric autocatalysis triggered by triglycine sulfate with switchable chirality by altering the direction of the applied electric field. Chemical Communications, 2021, 57, 5999-6002.	4.1	5
3	Circular dichroism spectroscopy of catalyst preequilibrium in asymmetric autocatalysis of pyrimidyl alkanol. Chemical Communications, 2021, 57, 11209-11212.	4.1	5
4	N,N,N′,N′ â€Tetrakis(3â€isoquinolylmethyl)â€2,6â€lutidylenediamine (3â€isoTQLN): A Fluorescent Zn 2+ /Ce Sensor as a Hybrid of 2â€Quinolyl/1â€isoquionolyl Counterparts TQLN/1â€isoTQLN. European Journal of Inorganic Chemistry, 2021, 2021, 1287-1296.	d 2+ Dual 2.0	4
5	Asymmetric Autocatalysis as a Link Between Crystal Chirality and Highly Enantioenriched Organic Compounds. Israel Journal of Chemistry, 2021, 61, 507-516.	2.3	6
6	A Synthetic Model for the Possible FeIV2(μ-O)2 Core of Methane Monooxygenase Intermediate Q Derived from a Structurally Characterized FeIIIFeIV(μ-O)2 Complex. Inorganic Chemistry, 2021, , .	4.0	1
7	A Tetrakisquinoline Analog of Calcium Indicator Quin2 for Fluorescence Detection of Cd ²⁺ . European Journal of Inorganic Chemistry, 2020, 2020, 757-763.	2.0	8
8	Switching of Fluorescent Zn/Cd Selectivity in <i>N</i> , <i>N</i> , <i>N′</i> , <i>N</i> ′-Tetrakis(6-methoxy-2-quinolylmethyl)-1,2-diphenylethylenediamine by One Asymmetric Carbon Atom Inversion. Inorganic Chemistry, 2020, 59, 5313-5324.	4.0	11
9	Role of Asymmetric Autocatalysis in the Elucidation of Origins of Homochirality of Organic Compounds. Symmetry, 2019, 11, 694.	2.2	27
10	Formation of enantioenriched alkanol with stochastic distribution of enantiomers in the absolute asymmetric synthesis under heterogeneous solid–vapor phase conditions. Chemical Communications, 2019, 55, 5223-5226.	4.1	17
11	Achiral amino acid glycine acts as an origin of homochirality in asymmetric autocatalysis. Organic and Biomolecular Chemistry, 2019, 17, 4200-4203.	2.8	21
12	Asymmetric autocatalysis of pyrimidyl alkanol and related compounds. Self-replication, amplification of chirality and implication for the origin of biological enantioenriched chirality. Tetrahedron, 2018, 74, 1973-1990.	1.9	34
13	Carbohydrate-Appended TQNPEN [N ,N ,N′ ,N′ -Tetrakis(2-quinolylmethyl)-3-aza-1,5-pentanediamine] Derivatives for Fluorescence Detection of Intracellular Cd2+. European Journal of Inorganic Chemistry, 2018, 2018, 2755-2761.	2.0	7
14	Carbohydrate-Appended TQNPEN [N ,N ,N′ ,N′ -Tetrakis(2-quinolylmethyl)-3-aza-1,5-pentanediamine] Derivatives for Fluorescence Detection of Intracellular Cd2+. European Journal of Inorganic Chemistry, 2018, 2018, 2731-2731.	2.0	0
15	Pyrophosphate-Induced Intramolecular Excimer Formation in Dinuclear Zinc(II) Complexes with Tetrakisquinoline Ligands. Inorganic Chemistry, 2018, 57, 7724-7734.	4.0	16
16	Reversal of the sense of enantioselectivity between 1- and 2-aza[6]helicenes used as chiral inducers of asymmetric autocatalysis. Organic and Biomolecular Chemistry, 2017, 15, 1321-1324.	2.8	24
17	Achiral Inorganic Gypsum Acts as an Origin of Chirality through Its Enantiotopic Surface in Conjunction with Asymmetric Autocatalysis. Angewandte Chemie, 2017, 129, 560-563.	2.0	6
18	Achiral Inorganic Gypsum Acts as an Origin of Chirality through Its Enantiotopic Surface in Conjunction with Asymmetric Autocatalysis. Angewandte Chemie - International Edition, 2017, 56, 545-548.	13.8	35

ARIMASA MATSUMOTO

#	Article	IF	CITATIONS
19	Asymmetric Autocatalysis and the Origin of Homochirality. ACS Symposium Series, 2017, , 27-47.	0.5	3
20	Pointâ€ŧoâ€Point Ultraâ€Remote Asymmetric Control with Flexible Linker. Chemistry - A European Journal, 2017, 23, 282-285.	3.3	5
21	Asymmetric Induction by a Nitrogen ¹⁴ N/ ¹⁵ N Isotopomer in Conjunction with Asymmetric Autocatalysis. Angewandte Chemie, 2016, 128, 15472-15475.	2.0	5
22	Titelbild: Asymmetric Induction by a Nitrogen 14 N/15 N Isotopomer in Conjunction with Asymmetric Autocatalysis (Angew. Chem. 49/2016). Angewandte Chemie, 2016, 128, 15407-15407.	2.0	0
23	Absolute Structure Determination of Chiral Crystals Consisting of Achiral Benzophenone with Single-crystal X-ray Diffraction and Its Correlation with Solid-state Circular Dichroism. Chemistry Letters, 2016, 45, 526-528.	1.3	10
24	Elucidation of the Structures of Asymmetric Autocatalyst Based on X-ray Crystallography. Bulletin of the Chemical Society of Japan, 2016, 89, 1170-1177.	3.2	16
25	Asymmetric Induction by a Nitrogen ¹⁴ N/ ¹⁵ N Isotopomer in Conjunction with Asymmetric Autocatalysis. Angewandte Chemie - International Edition, 2016, 55, 15246-15249.	13.8	38
26	Crystal Structure of the Isopropylzinc Alkoxide of Pyrimidyl Alkanol: Mechanistic Insights for Asymmetric Autocatalysis with Amplification of Enantiomeric Excess. Angewandte Chemie - International Edition, 2015, 54, 15218-15221.	13.8	59
27	Asymmetric Autocatalysis Triggered by Chiral Crystal of Achiral Ethylenediamine Sulfate. Chemistry Letters, 2015, 44, 688-690.	1.3	27
28	Asymmetric induction by retgersite, nickel sulfate hexahydrate, in conjunction with asymmetric autocatalysis. New Journal of Chemistry, 2015, 39, 6742-6745.	2.8	27
29	Absolute Configuration Analysis of Organic Compounds by Single Crystal X-ray Diffraction. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2015, 73, 755-761.	0.1	Ο
30	Asymmetric Autocatalysis of Pyrimidyl Alkanol and Its Application to the Study on the Origin of Homochirality. Accounts of Chemical Research, 2014, 47, 3643-3654.	15.6	151
31	The Origins of Homochirality Examined by Using Asymmetric Autocatalysis. Chemical Record, 2014, 14, 70-83.	5.8	81
32	Asymmetric autocatalysis triggered by oxygen isotopically chiral glycerin. Organic and Biomolecular Chemistry, 2013, 11, 2928.	2.8	38
33	Enantioselective Synthesis Induced by the Helical Molecular Arrangement in the Chiral Crystal of Achiral Tris(2-hydroxyethyl) 1,3,5-Benzenetricarboxylate in Conjunction with Asymmetric Autocatalysis, Chemistry Letters, 2013, 42, 711-713	1.3	23