Arimasa Matsumoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2874604/publications.pdf

Version: 2024-02-01

567281 526287 33 741 15 27 citations h-index g-index papers 37 37 37 500 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Asymmetric Autocatalysis of Pyrimidyl Alkanol and Its Application to the Study on the Origin of Homochirality. Accounts of Chemical Research, 2014, 47, 3643-3654.	15.6	151
2	The Origins of Homochirality Examined by Using Asymmetric Autocatalysis. Chemical Record, 2014, 14, 70-83.	5.8	81
3	Crystal Structure of the Isopropylzinc Alkoxide of Pyrimidyl Alkanol: Mechanistic Insights for Asymmetric Autocatalysis with Amplification of Enantiomeric Excess. Angewandte Chemie - International Edition, 2015, 54, 15218-15221.	13.8	59
4	Asymmetric autocatalysis triggered by oxygen isotopically chiral glycerin. Organic and Biomolecular Chemistry, 2013, 11, 2928.	2.8	38
5	Asymmetric Induction by a Nitrogen ¹⁴ N/ ¹⁵ N Isotopomer in Conjunction with Asymmetric Autocatalysis. Angewandte Chemie - International Edition, 2016, 55, 15246-15249.	13.8	38
6	Achiral Inorganic Gypsum Acts as an Origin of Chirality through Its Enantiotopic Surface in Conjunction with Asymmetric Autocatalysis. Angewandte Chemie - International Edition, 2017, 56, 545-548.	13.8	35
7	Asymmetric autocatalysis of pyrimidyl alkanol and related compounds. Self-replication, amplification of chirality and implication for the origin of biological enantioenriched chirality. Tetrahedron, 2018, 74, 1973-1990.	1.9	34
8	Asymmetric Autocatalysis Triggered by Chiral Crystal of Achiral Ethylenediamine Sulfate. Chemistry Letters, 2015, 44, 688-690.	1.3	27
9	Asymmetric induction by retgersite, nickel sulfate hexahydrate, in conjunction with asymmetric autocatalysis. New Journal of Chemistry, 2015, 39, 6742-6745.	2.8	27
10	Role of Asymmetric Autocatalysis in the Elucidation of Origins of Homochirality of Organic Compounds. Symmetry, 2019, 11, 694.	2.2	27
11	Reversal of the sense of enantioselectivity between 1- and 2-aza[6]helicenes used as chiral inducers of asymmetric autocatalysis. Organic and Biomolecular Chemistry, 2017, 15, 1321-1324.	2.8	24
12	Enantioselective Synthesis Induced by the Helical Molecular Arrangement in the Chiral Crystal of Achiral Tris(2-hydroxyethyl) 1,3,5-Benzenetricarboxylate in Conjunction with Asymmetric Autocatalysis. Chemistry Letters, 2013, 42, 711-713.	1.3	23
13	Achiral amino acid glycine acts as an origin of homochirality in asymmetric autocatalysis. Organic and Biomolecular Chemistry, 2019, 17, 4200-4203.	2.8	21
14	Formation of enantioenriched alkanol with stochastic distribution of enantiomers in the absolute asymmetric synthesis under heterogeneous solid–vapor phase conditions. Chemical Communications, 2019, 55, 5223-5226.	4.1	17
15	Elucidation of the Structures of Asymmetric Autocatalyst Based on X-ray Crystallography. Bulletin of the Chemical Society of Japan, 2016, 89, 1170-1177.	3.2	16
16	Pyrophosphate-Induced Intramolecular Excimer Formation in Dinuclear Zinc(II) Complexes with Tetrakisquinoline Ligands. Inorganic Chemistry, 2018, 57, 7724-7734.	4.0	16
17	Switching of Fluorescent Zn/Cd Selectivity in <i>N</i> , <i>Nဲ</i> , <i>Ná</i> , <i>N</i>	4.0	11
18	Absolute Structure Determination of Chiral Crystals Consisting of Achiral Benzophenone with Single-crystal X-ray Diffraction and Its Correlation with Solid-state Circular Dichroism. Chemistry Letters, 2016, 45, 526-528.	1.3	10

#	Article	IF	Citations
19	A Tetrakisquinoline Analog of Calcium Indicator Quin2 for Fluorescence Detection of Cd ²⁺ . European Journal of Inorganic Chemistry, 2020, 2020, 757-763.	2.0	8
20	Carbohydrate-Appended TQNPEN [N ,N ,N′ ,N′ -Tetrakis(2-quinolylmethyl)-3-aza-1,5-pentanediamine] Derivatives for Fluorescence Detection of Intracellular Cd2+. European Journal of Inorganic Chemistry, 2018, 2018, 2755-2761.	2.0	7
21	Achiral Inorganic Gypsum Acts as an Origin of Chirality through Its Enantiotopic Surface in Conjunction with Asymmetric Autocatalysis. Angewandte Chemie, 2017, 129, 560-563.	2.0	6
22	Asymmetric Autocatalysis as a Link Between Crystal Chirality and Highly Enantioenriched Organic Compounds. Israel Journal of Chemistry, 2021, 61, 507-516.	2.3	6
23	Asymmetric Induction by a Nitrogen ¹⁴ N/ ¹⁵ N Isotopomer in Conjunction with Asymmetric Autocatalysis. Angewandte Chemie, 2016, 128, 15472-15475.	2.0	5
24	Pointâ€toâ€Point Ultraâ€Remote Asymmetric Control with Flexible Linker. Chemistry - A European Journal, 2017, 23, 282-285.	3.3	5
25	Asymmetric autocatalysis triggered by triglycine sulfate with switchable chirality by altering the direction of the applied electric field. Chemical Communications, 2021, 57, 5999-6002.	4.1	5
26	Circular dichroism spectroscopy of catalyst preequilibrium in asymmetric autocatalysis of pyrimidyl alkanol. Chemical Communications, 2021, 57, 11209-11212.	4.1	5
27	N,N,N′,N′ â€Tetrakis(3â€isoquinolylmethyl)â€2,6â€lutidylenediamine (3â€isoTQLN): A Fluorescent Zn 2+ / Sensor as a Hybrid of 2â€Quinolyl/1â€lsoquionolyl Counterparts TQLN/1â€isoTQLN. European Journal of Inorganic Chemistry, 2021, 2021, 1287-1296.	Cd 2+ Dual 2.0	4
28	Asymmetric Autocatalysis and the Origin of Homochirality. ACS Symposium Series, 2017, , 27-47.	0.5	3
29	Chiral Dinuclear Eu III , Tb III , and Y III Complexes Supported by P â€5tereogenic Linear Tetraphosphine Tetraoxide. Chemistry - A European Journal, 2022, 28, .	3.3	3
30	A Synthetic Model for the Possible FeIV2($\hat{l}\frac{1}{4}$ -O)2 Core of Methane Monooxygenase Intermediate Q Derived from a Structurally Characterized FeIIIFeIV($\hat{l}\frac{1}{4}$ -O)2 Complex. Inorganic Chemistry, 2021, , .	4.0	1
31	Titelbild: Asymmetric Induction by a Nitrogen 14 N/15 N Isotopomer in Conjunction with Asymmetric Autocatalysis (Angew. Chem. 49/2016). Angewandte Chemie, 2016, 128, 15407-15407.	2.0	0
32	Carbohydrate-Appended TQNPEN [N ,N ,N′ ,N′ -Tetrakis(2-quinolylmethyl)-3-aza-1,5-pentanediamine] Derivatives for Fluorescence Detection of Intracellular Cd2+. European Journal of Inorganic Chemistry, 2018, 2018, 2731-2731.	2.0	0
33	Absolute Configuration Analysis of Organic Compounds by Single Crystal X-ray Diffraction. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2015, 73, 755-761.	0.1	O