Franz-Josef Meyer-Almes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2874488/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptomic and genomic studies classify NKL54 as a histone deacetylase inhibitor with indirect influence on MEF2-dependent transcription. Nucleic Acids Research, 2022, 50, 2566-2586.	6.5	12
2	Assessment of Tractable Cysteines for Covalent Targeting by Screening Covalent Fragments. ChemBioChem, 2021, 22, 743-753.	1.3	19
3	Pharmacophore hybridization approach to discover novel pyrazoline-based hydantoin analogs with anti-tumor efficacy. Bioorganic Chemistry, 2021, 107, 104527.	2.0	20
4	Discovery of Dihydro-1,4-Benzoxazine Carboxamides as Potent and Highly Selective Inhibitors of Sirtuin-1. Journal of Medicinal Chemistry, 2021, 64, 5838-5849.	2.9	11
5	Thiazolidinedione "Magic Bullets―Simultaneously Targeting PPARγ and HDACs: Design, Synthesis, and Investigations of their <i>In Vitro</i> and <i>In Vivo</i> Antitumor Effects. Journal of Medicinal Chemistry, 2021, 64, 6949-6971.	2.9	20
6	HDAC4 Inhibitors with Cyclic Linker and Nonâ€hydroxamate Zinc Binding Group: Design, Synthesis, HDAC Screening and <i>in</i> â€ <i>vitro</i> Cytotoxicity evaluation ChemistrySelect, 2021, 6, 6748-6763.	0.7	8
7	Non-Hydroxamate Zinc-Binding Groups as Warheads for Histone Deacetylases. Molecules, 2021, 26, 5151.	1.7	19
8	Development and investigationÂof thiazolidinedione and pyrazoline compounds as antiangiogenic weapons targeting VEGFR-2. Future Medicinal Chemistry, 2021, 13, 1963-1986.	1.1	4
9	Double-edged Swords: Diaryl pyrazoline thiazolidinediones synchronously targeting cancer epigenetics and angiogenesis. Bioorganic Chemistry, 2021, 116, 105350.	2.0	7
10	Multi-target weapons: diaryl-pyrazoline thiazolidinediones simultaneously targeting VEGFR-2 and HDAC cancer hallmarks. RSC Medicinal Chemistry, 2021, 12, 1540-1554.	1.7	12
11	Mechanistic Insights into Binding of Ligands with Thiazolidinedione Warhead to Human Histone Deacetylase 4. Pharmaceuticals, 2021, 14, 1032.	1.7	7
12	Discovery of 5-naphthylidene-2,4-thiazolidinedione derivatives as selective HDAC8 inhibitors and evaluation of their cytotoxic effects in leukemic cell lines. Bioorganic Chemistry, 2020, 95, 103522.	2.0	31
13	Repurposing approved drugs as potential inhibitors of 3CL-protease of SARS-CoV-2: Virtual screening and structure based drug design. Computational Biology and Chemistry, 2020, 88, 107351.	1.1	57
14	Synthesis and Biological Evaluation of Pyrazoline and Pyrrolidineâ€2,5â€dione Hybrids as Potential Antitumor Agents. ChemMedChem, 2020, 15, 1813-1825.	1.6	20
15	Permuted 2,4-thiazolidinedione (TZD) analogs as GLUT inhibitors and their in-vitro evaluation in leukemic cells. European Journal of Pharmaceutical Sciences, 2020, 154, 105512.	1.9	20
16	Switching the Switch: Ligand Induced Disulfide Formation in HDAC8. Chemistry - A European Journal, 2020, 26, 13249-13255.	1.7	6
17	Discovery of novel N-substituted thiazolidinediones (TZDs) as HDAC8 inhibitors: in-silico studies, synthesis, and biological evaluation. Bioorganic Chemistry, 2020, 100, 103934.	2.0	31
18	Structure guided design and synthesis of furyl thiazolidinedione derivatives as inhibitors of GLUT 1 and GLUT 4, and evaluation of their anti-leukemic potential. European Journal of Medicinal Chemistry, 2020, 202, 112603.	2.6	22

#	Article	IF	CITATIONS
19	Synthesis and structure activity relationship of 1, 3-benzo-thiazine-2-thiones as selective HDAC8 inhibitors. European Journal of Medicinal Chemistry, 2019, 184, 111756.	2.6	17
20	Using design of experiment to optimize enzyme activity assays. ChemTexts, 2019, 5, 1.	1.0	2
21	Thiocarbonyl Surrogate via Combination of Potassium Sulfide and Chloroform for Dithiocarbamate Construction. Organic Letters, 2019, 21, 7484-7488.	2.4	24
22	Determination of the binding mechanism of histone deacetylase inhibitors. Chemical Biology and Drug Design, 2019, 93, 1214-1250.	1.5	2
23	Covalent inhibition of histone deacetylase 8 by 3,4-dihydro-2H-pyrimido[1,2-c][1,3]benzothiazin-6-imine. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 577-585.	1.1	12
24	Kinetically selective and potent inhibitors of HDAC8. Biological Chemistry, 2019, 400, 733-743.	1.2	7
25	The enzyme activity of histone deacetylase 8 is modulated by a redox-switch. Redox Biology, 2019, 20, 60-67.	3.9	37
26	Fluorescence lifetime based assays in drug discovery. , 2018, 08, .		0
27	Perfluorinated hydroxamic acids are potent and selective inhibitors of HDAC-like enzymes from Pseudomonas aeruginosa. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1508-1512.	1.0	6
28	The thermodynamic signature of ligand binding to histone deacetylase-like amidohydrolases is most sensitive to the flexibility in the L2-loop lining the active site pocket. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1855-1863.	1.1	6
29	A Fluorescenceâ€Lifetimeâ€Based Binding Assay for Classâ€lla Histone Deacetylases. Chemistry - A European Journal, 2017, 23, 3107-3116.	1.7	22
30	Impact of binding mechanism on selective inhibition of histone deacetylase isoforms. Chemical Biology and Drug Design, 2017, 90, 1215-1225.	1.5	4
31	Toward Photopharmacological Antimicrobial Chemotherapy Using Photoswitchable Amidohydrolase Inhibitors. ACS Infectious Diseases, 2017, 3, 152-161.	1.8	74
32	Fluorescence lifetime based bioassays. Methods and Applications in Fluorescence, 2017, 5, 042002.	1.1	23
33	Crystal Structure of a Histone Deacetylase Homologue from <i>Pseudomonas aeruginosa</i> . Biochemistry, 2016, 55, 6858-6868.	1.2	8
34	Potent and Selective Nonâ€hydroxamate Histone Deacetylaseâ€8 Inhibitors. ChemMedChem, 2016, 11, 2598-2606.	1.6	31
35	Substrate specificity and function of acetylpolyamine amidohydrolases from Pseudomonas aeruginosa. BMC Biochemistry, 2016, 17, 4.	4.4	14
36	Discrimination between conformational selection and induced fit protein–ligand binding using Integrated Global Fit analysis. European Biophysics Journal, 2016, 45, 245-257.	1.2	15

#	Article	IF	CITATIONS
37	The <i>cis</i> â€state of an azobenzene photoswitch is stabilized through specific interactions with a protein surface. Journal of Molecular Recognition, 2015, 28, 201-209.	1.1	10
38	Kinetic binding assays for the analysis of protein–ligand interactions. Drug Discovery Today: Technologies, 2015, 17, 1-8.	4.0	18
39	Synthesis of azobenzenealkylmaleimide probes to photocontrol the enzyme activity of a bacterial histone deacetylase-like amidohydrolase. Bioorganic Chemistry, 2014, 57, 155-161.	2.0	17
40	Thermodynamics of ligand binding to histone deacetylase like amidohydrolase from Bordetella/Alcaligenes. Journal of Molecular Recognition, 2014, 27, 160-172.	1.1	7
41	Azobenzene switch with a long-lived cis-state to photocontrol the enzyme activity of a histone deacetylase-like amidohydrolase. Biological Chemistry, 2014, 395, 401-412.	1.2	12
42	A fluorescence lifetime-based binding assay for acetylpolyamine amidohydrolases from Pseudomonas aeruginosa using a [1,3]dioxolo[4,5-f][1,3]benzodioxole (DBD) ligand probe. Analytical and Bioanalytical Chemistry, 2014, 406, 4889-4897.	1.9	22
43	Kinetic method for the large-scale analysis of the binding mechanism of histone deacetylase inhibitors. Analytical Biochemistry, 2014, 460, 39-46.	1.1	17
44	Highly Ligand Efficient and Selective <i>N</i> â€2â€(Thioethyl)picolinamide Histone Deacetylase Inhibitors Inspired by the Natural Product Psammaplinâ€A. ChemMedChem, 2013, 8, 149-156.	1.6	17
45	Class IIa HDACs repressive activities on MEF2â€depedent transcription are associated with poor prognosis of ER ⁺ breast tumors. FASEB Journal, 2013, 27, 942-954.	0.2	41
46	Thioester derivatives of the natural product psammaplin A as potent histone deacetylase inhibitors. Beilstein Journal of Organic Chemistry, 2013, 9, 81-88.	1.3	28
47	Defining the Mechanism of Action and Enzymatic Selectivity of Psammaplin A against Its Epigenetic Targets. Journal of Medicinal Chemistry, 2012, 55, 1731-1750.	2.9	89
48	Synthesis and biochemical analysis of 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoro-N-hydroxy-octanediamides as inhibitors of human histone deacetylases. Bioorganic and Medicinal Chemistry, 2012, 20, 985-995.	1.4	11
49	Identification of Selective Class II Histone Deacetylase Inhibitors Using a Novel Dual-Parameter Binding Assay Based on Fluorescence Anisotropy and Lifetime. Journal of Biomolecular Screening, 2011, 16, 1206-1216.	2.6	11
50	New synthetic strategies towards psammaplin A, access to natural product analogues for biological evaluation. Organic and Biomolecular Chemistry, 2011, 9, 659-662.	1.5	27
51	Thailandepsins: Bacterial Products with Potent Histone Deacetylase Inhibitory Activities and Broad-Spectrum Antiproliferative Activities. Journal of Natural Products, 2011, 74, 2031-2038.	1.5	105
52	Compact, cost-efficient microfluidics-based stopped-flow device. Analytical and Bioanalytical Chemistry, 2011, 399, 1117-1125.	1.9	18
53	Abstract 5418: Thailandepsins: Novel bacterial natural products with potent histone deacetylase inhibition activities and promising anticancer activities. , 2011, , .		0
54	The Proapoptotic Influenza A Virus Protein PB1-F2 Forms a Nonselective Ion Channel. PLoS ONE, 2010, 5, e11112.	1.1	55

#	Article	IF	CITATIONS
55	Mechanism of Binding of the Inhibitor (<i>E</i>)-3-(Furan-2-yl)- <i>N</i> -hydroxyacrylamide to a Histone Deacetylase-like Amidohydrolase. Biochemistry, 2010, 49, 1418-1424.	1.2	8
56	Non-isotopic dual parameter competition assay suitable for high-throughput screening of histone deacetylases. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3651-3656.	1.0	19
57	Identification of novel small-molecule histone deacetylase inhibitors by medium-throughput screening using a fluorigenic assay. Biochemical Journal, 2008, 413, 143-150.	1.7	17
58	Histone deacetylase inhibitor assay based on fluorescence resonance energy transfer. Analytical Biochemistry, 2007, 362, 136-141.	1.1	29
59	Inhibitor-mediated stabilization of the conformational structure of a histone deacetylase-like amidohydrolase. FEBS Journal, 2007, 274, 3578-3588.	2.2	8
60	Novel fluorescence based receptor binding assay method for receptors lacking ligand conjugates with preserved affinity: Study on estrogen receptor ?. Biopolymers, 2003, 72, 256-263.	1.2	12
61	Novel Assay for Protein Impurities in Biopharmaceuticals Based on Fluorescence Intensity Distribution Analysis (FIDA). , 2001, , 488-490.		0
62	A Novel and Robust Homogeneous Fluorescence-Based Assay Using Nanoparticles for Pharmaceutical Screening and Diagnostics. Journal of Biomolecular Screening, 2000, 5, 227-237.	2.6	33
63	Enzyme Inhibition Assays Using Fluorescence Correlation Spectroscopy:Â A New Algorithm for the Derivation ofkcat/KMandKiValues at Substrate Concentrations Much Lower than the Michaelis Constant. Biochemistry, 2000, 39, 13261-13268.	1.2	34
64	Fluorescence correlation spectroscopy: lead discovery by miniaturized HTS. Drug Discovery Today, 1998, 3, 457-465.	3.2	244
65	Mechanism of the α-complementation reaction of E. coli β-galactosidase deduced from fluorescence correlation spectroscopy measurements. Biophysical Chemistry, 1998, 75, 151-160.	1.5	13
66	Fluorescence cross-correlation: A new concept for polymerase chain reaction. Journal of Biotechnology, 1998, 63, 97-109.	1.9	130
67	Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophysical Journal, 1997, 72, 1878-1886.	0.2	806
68	The cyclic AMP receptor promoter DNA complex:A comparison of crystal and solution structure by quantitative molecular electrooptics 1 1Edited by T. Richmond. Journal of Molecular Biology, 1997, 269, 842-850.	2.0	12
69	The Structure of the RNA Polymerase-Promoter Complex. Journal of Molecular Biology, 1994, 236, 1-6.	2.0	33
70	Mechanism of intercalation into the DNA double helix by ethidium. Biochemistry, 1993, 32, 4246-4253.	1.2	291
71	A Simple Metal-Ligand Catalyzed Heck-Type Reaction for β, β-Doublearylation of Acrylic Acid Esters. Archives of Natural and Medicinal Chemistry, 0, , .	0.0	0
72	Synthesis and HDAC inhibitory activity of pyrimidine-based hydroxamic acids. Beilstein Journal of Organic Chemistry, 0, 18, 837-844.	1.3	2