
## Yu Zhao

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2874436/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | High-Performance Blue Molecular Emitter-Free and Doping-Free Hybrid White Organic Light-Emitting<br>Diodes: an Alternative Concept To Manipulate Charges and Excitons Based on Exciplex and Electroplex<br>Emission. ACS Photonics, 2017, 4, 1566-1575. | 6.6  | 73        |
| 2  | Preparation and characterization of ZnS thin films prepared by chemical bath deposition. Materials Science in Semiconductor Processing, 2013, 16, 1478-1484.                                                                                            | 4.0  | 70        |
| 3  | 2D In <sub>2</sub> S <sub>3</sub> Nanoflake Coupled with Graphene toward Highâ€Sensitivity and<br>Fastâ€Response Bulkâ€Silicon Schottky Photodetector. Small, 2019, 15, e1904912.                                                                       | 10.0 | 67        |
| 4  | Synthesis of flower-like MoS2 nanosheets microspheres by hydrothermal method. Journal of<br>Materials Science: Materials in Electronics, 2015, 26, 8160-8166.                                                                                           | 2.2  | 62        |
| 5  | Self-Powered SnS <sub>1–<i>x</i></sub> Se <i><sub>x</sub></i> Alloy/Silicon Heterojunction<br>Photodetectors with High Sensitivity in a Wide Spectral Range. ACS Applied Materials & Interfaces,<br>2019, 11, 40222-40231.                              | 8.0  | 58        |
| 6  | Effect of different complexing agents on the properties of chemical-bath-deposited ZnS thin films.<br>Journal of Alloys and Compounds, 2014, 588, 228-234.                                                                                              | 5.5  | 55        |
| 7  | 2D van der Waals heterostructures: processing, optical properties and applications in ultrafast photonics. Materials Horizons, 2020, 7, 2903-2921.                                                                                                      | 12.2 | 44        |
| 8  | Synthesis and characterization of CdSe nanocrystalline thin films deposited by chemical bath deposition. Materials Science in Semiconductor Processing, 2013, 16, 1592-1598.                                                                            | 4.0  | 40        |
| 9  | Doping-free white organic light-emitting diodes without blue molecular emitter: An unexplored approach to achieve high performance via exciplex emission. Applied Physics Letters, 2017, 110, .                                                         | 3.3  | 39        |
| 10 | Thicknessâ€Dependent Optical Properties and Inâ€Plane Anisotropic Raman Response of the 2D βâ€In 2 S 3.<br>Advanced Optical Materials, 2019, 7, 1901085.                                                                                                | 7.3  | 39        |
| 11 | Non‣ayered Te/In <sub>2</sub> S <sub>3</sub> Tunneling Heterojunctions with Ultrahigh<br>Photoresponsivity and Fast Photoresponse. Small, 2022, 18, e2200445.                                                                                           | 10.0 | 38        |
| 12 | Regulating Charge and Exciton Distribution in High-Performance Hybrid White Organic Light-Emitting<br>Diodes with n-Type Interlayer Switch. Nano-Micro Letters, 2017, 9, 37.                                                                            | 27.0 | 37        |
| 13 | Graphene/In <sub>2</sub> S <sub>3</sub> van der Waals Heterostructure for Ultrasensitive<br>Photodetection. ACS Photonics, 2018, 5, 4912-4919.                                                                                                          | 6.6  | 36        |
| 14 | Dy3+ Doped Ca9Gd(PO4)7: a novel single-phase full-color emitting phosphor. Journal of Materials<br>Science: Materials in Electronics, 2018, 29, 6548-6555.                                                                                              | 2.2  | 34        |
| 15 | Allâ€Dielectric Nanostructure Fabry–Pérotâ€Enhanced Mie Resonances Coupled with Photogain<br>Modulation toward Ultrasensitive In <sub>2</sub> S <sub>3</sub> Photodetector. Advanced<br>Functional Materials, 2021, 31, 2007987.                        | 14.9 | 34        |
| 16 | Solvothermal synthesis of Cu2ZnSnS4 nanocrystalline thin films for application of solar cells.<br>International Journal of Hydrogen Energy, 2015, 40, 797-805.                                                                                          | 7.1  | 32        |
| 17 | High-performance hybrid white organic light-emitting diodes exploiting blue thermally activated delayed fluorescent dyes. Dyes and Pigments, 2017, 147, 83-89.                                                                                          | 3.7  | 32        |
| 18 | Dye-sensitized solar cells based on ZnO nanoflowers and TiO2 nanoparticles composite photoanodes.<br>Journal of Materials Science: Materials in Electronics, 2014, 25, 1122-1126.                                                                       | 2.2  | 29        |

Үи Ζнао

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Growth of Cu2ZnSnS4 thin films on transparent conducting glass substrates by the solvothermal method. Materials Letters, 2013, 111, 120-122.                                                                                                             | 2.6  | 28        |
| 20 | Out of plane stacking of InSe-based heterostructures towards high performance electronic and optoelectronic devices using a graphene electrode. Journal of Materials Chemistry C, 2018, 6, 12509-12517.                                                  | 5.5  | 28        |
| 21 | Investigation on the structure and optical properties of chemically deposited ZnSe nanocrystalline thin films. Physica B: Condensed Matter, 2013, 410, 120-125.                                                                                          | 2.7  | 27        |
| 22 | Tunable electronic structure of graphdiyne/MoS2 van der Waals heterostructure. Materials Letters,<br>2018, 228, 289-292.                                                                                                                                 | 2.6  | 26        |
| 23 | Epitaxial growth of large-scale In <sub>2</sub> S <sub>3</sub> nanoflakes and the construction of a high performance In <sub>2</sub> 3/Si photodetector. Journal of Materials Chemistry C, 2019, 7, 12104-12113.                                         | 5.5  | 26        |
| 24 | Universal Strategy Integrating Strain and Interface Engineering to Drive Highâ€Performance 2D Material<br>Photodetectors. Advanced Optical Materials, 2021, 9, 2100450.                                                                                  | 7.3  | 26        |
| 25 | Self-supported hierarchical porous Li4Ti5O12/carbon arrays for boosted lithium ion storage. Journal of Energy Chemistry, 2021, 54, 754-760.                                                                                                              | 12.9 | 25        |
| 26 | Synthesis of NiCo2S4 nanowire arrays through ion exchange reaction and their application in Pt-free counter-electrode. Materials Letters, 2016, 166, 154-157.                                                                                            | 2.6  | 24        |
| 27 | Self-assembly In2Se3/SnSe2 heterostructure array with suppressed dark current and enhanced photosensitivity for weak signal. Science China Materials, 2020, 63, 1560-1569.                                                                               | 6.3  | 24        |
| 28 | In-situ growth of Cu2ZnSnS4 nanospheres thin film on transparent conducting glass and its application in dye-sensitized solar cells. Materials Letters, 2015, 141, 228-230.                                                                              | 2.6  | 23        |
| 29 | Controllable growth of large-area atomically thin ReS2 films and their thickness-dependent optoelectronic properties. Applied Physics Letters, 2019, 114, .                                                                                              | 3.3  | 23        |
| 30 | Hydrothermal synthesis of WSe2 films and their application in high-performance photodetectors.<br>Applied Physics A: Materials Science and Processing, 2018, 124, 1.                                                                                     | 2.3  | 22        |
| 31 | High performance tin diselenide photodetectors dependent on thickness: a vertical graphene sandwiched device and interfacial mechanism. Nanoscale, 2019, 11, 13309-13317.                                                                                | 5.6  | 22        |
| 32 | Structural and optical properties of CdS thin films prepared by chemical bath deposition at different ammonia concentration and S/Cd molar ratios. Journal of Materials Science: Materials in Electronics, 2013, 24, 457-462.                            | 2.2  | 20        |
| 33 | Nonlinear optical properties of PtTe <sub>2</sub> based saturable absorbers for ultrafast photonics.<br>Journal of Materials Chemistry C, 2022, 10, 5124-5133.                                                                                           | 5.5  | 20        |
| 34 | Synthesis and up-conversion properties of Ho 3+ -Yb 3+ -F â^' tri-doped TiO 2 nanoparticles and their application in dye-sensitized solar cells. Materials Research Bulletin, 2017, 88, 1-8.                                                             | 5.2  | 18        |
| 35 | Direct growth of Cu2ZnSnS4 on three-dimensional porous reduced graphene oxide thin films as counter electrode with high conductivity and excellent catalytic activity for dye-sensitized solar cells. Journal of Materials Science, 2018, 53, 2748-2757. | 3.7  | 18        |
| 36 | Silver nanoparticle-decorated graphene oxide for surface-enhanced Raman scattering detection and optical limiting applications. Journal of Materials Science, 2018, 53, 573-580.                                                                         | 3.7  | 18        |

Үи Ζнао

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Tunable Polarity Behavior and High-Performance Photosensitive Characteristics in Schottky-Barrier<br>Field-Effect Transistors Based on Multilayer WS <sub>2</sub> . ACS Applied Materials & Interfaces,<br>2018, 10, 2745-2751.               | 8.0 | 17        |
| 38 | Memtransistors Based on Non-Layered In <sub>2</sub> S <sub>3</sub> Two-Dimensional Thin Films With<br>Optical-Modulated Multilevel Resistance States and Gate-Tunable Artificial Synaptic Plasticity. IEEE<br>Access, 2020, 8, 106726-106734. | 4.2 | 17        |
| 39 | Large-area ReS2 monolayer films on flexible substrate for SERS based molecular sensing with strong fluorescence quenching. Applied Surface Science, 2021, 542, 148757.                                                                        | 6.1 | 17        |
| 40 | NiCo2S4 nanosheet thin film counter electrodes prepared by a two-step approach for dye-sensitized solar cells. Materials Letters, 2018, 217, 185-188.                                                                                         | 2.6 | 16        |
| 41 | Bright white-light upconversion from core-shell nanocrystals through interfacial energy transfer.<br>Dyes and Pigments, 2018, 154, 87-91.                                                                                                     | 3.7 | 15        |
| 42 | Synthesis of Submillimeterâ€Scale Single Crystal Stannous Sulfide Nanoplates for Visible and<br>Nearâ€Infrared Photodetectors with Ultrahigh Responsivity. Advanced Electronic Materials, 2018, 4,<br>1800154.                                | 5.1 | 15        |
| 43 | Efficient passivation of monolayer MoS2 by epitaxially grown 2D organic crystals. Science Bulletin, 2019, 64, 1700-1706.                                                                                                                      | 9.0 | 15        |
| 44 | Electrocatalytic performance of ReS2 nanosheets in hydrogen evolution reaction. International<br>Journal of Hydrogen Energy, 2022, 47, 2293-2303.                                                                                             | 7.1 | 15        |
| 45 | Effect of stacking type in precursors on composition, morphology and electrical properties of the CIGS films. Journal of Materials Science: Materials in Electronics, 2013, 24, 2553-2557.                                                    | 2.2 | 14        |
| 46 | Study of perovskite solar cells based on mixed-organic-cation<br>FA <sub>x</sub> MA <sub>1â^'x</sub> PbI <sub>3</sub> absorption layer. Physical Chemistry Chemical<br>Physics, 2019, 21, 11822-11828.                                        | 2.8 | 14        |
| 47 | Synthesis of In2S3 thin films directly onto conductive substrates via PVP-assisted microwave irradiation method. Materials Letters, 2018, 210, 66-69.                                                                                         | 2.6 | 12        |
| 48 | Enhanced Raman scattering on two-dimensional palladium diselenide. Nanoscale, 2022, 14, 4181-4187.                                                                                                                                            | 5.6 | 12        |
| 49 | Solvothermal synthesis of CuInS2 powders and CuInS2 thin films for solar cell application. Journal of Materials Science: Materials in Electronics, 2013, 24, 5055-5060.                                                                       | 2.2 | 11        |
| 50 | Rapid synthesis of Cu2ZnSnS4 nanocrystalline thin films directly on transparent conductive glass substrates by microwave irradiation. Materials Letters, 2015, 148, 63-66.                                                                    | 2.6 | 11        |
| 51 | Synthesis and characterization of Cu2ZnSnS4 nanocrystals prepared by microwave irradiation method. Journal of Materials Science: Materials in Electronics, 2015, 26, 5645-5652.                                                               | 2.2 | 11        |
| 52 | Study of carbon-based hole-conductor-free perovskite solar cells. International Journal of Hydrogen<br>Energy, 2018, 43, 11403-11410.                                                                                                         | 7.1 | 11        |
| 53 | Rational construction of vertical few layer graphene/NiO core-shell nanoflake arrays for efficient oxygen evolution reaction. Materials Research Bulletin, 2021, 139, 111260.                                                                 | 5.2 | 11        |
| 54 | High-quality two-dimensional tellurium flakes grown by high-temperature vapor deposition. Journal<br>of Materials Chemistry C, 2021, 9, 14394-14400.                                                                                          | 5.5 | 10        |

Үи Zhao

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A reasonably designed 2D WS <sub>2</sub> and CdS microwire heterojunction for high performance photoresponse. Nanoscale, 2021, 13, 5660-5669.                                                                                                                  | 5.6 | 10        |
| 56 | A spontaneously formed plasmonic-MoTe2 hybrid platform for ultrasensitive Raman enhancement.<br>Cell Reports Physical Science, 2021, 2, 100526.                                                                                                                | 5.6 | 10        |
| 57 | Investigation of the ZnSxSe1-x thin films prepared by chemical bath deposition. Journal of Materials<br>Science: Materials in Electronics, 2013, 24, 1348-1353.                                                                                                | 2.2 | 9         |
| 58 | Transport and interfacial transfer of electrons in dye-sensitized solar cells based on a TiO2<br>nanoparticle/TiO2 nanowire "double-layer―working electrode. Journal of Renewable and Sustainable<br>Energy, 2013, 5, 033101.                                  | 2.0 | 9         |
| 59 | Junction temperature measurement of GaN-based light-emitting diodes using temperature-dependent resistance. Semiconductor Science and Technology, 2014, 29, 035008.                                                                                            | 2.0 | 8         |
| 60 | Synthesis of CoS@NiS core/shell nanoarrays as efficient counter electrode for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2017, 28, 4904-4907.                                                                         | 2.2 | 8         |
| 61 | Synthesis of vertically aligned CoS prismatic nanorods as counter electrodes for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 1541-1546.                                                                      | 2.2 | 8         |
| 62 | Synthesis and characterization of the ultra-thin SnS flakes and the micron-thick SnS crystals by chemical vapor deposition. Journal of Materials Science: Materials in Electronics, 2019, 30, 10879-10885.                                                     | 2.2 | 8         |
| 63 | Dye-sensitized solar cells based on multilayered ultrafine TiO2 nanowire photoanodes. Journal of<br>Materials Science: Materials in Electronics, 2014, 25, 4008-4011.                                                                                          | 2.2 | 7         |
| 64 | Preparation of vertically aligned two-dimensional SnS <sub>2</sub> nanosheet film with strong saturable absorption to femtosecond laser. Journal Physics D: Applied Physics, 2019, 52, 165101.                                                                 | 2.8 | 7         |
| 65 | Growth of large-area two-dimensional non-layered β-In2S3 continuous thin films and application for photodetector device. Journal of Materials Science: Materials in Electronics, 2020, 31, 18175-18185.                                                        | 2.2 | 7         |
| 66 | Two-dimensional palladium ditelluride: A novel saturable absorption material for ultrafast fiber lasers. Infrared Physics and Technology, 2021, 119, 103962.                                                                                                   | 2.9 | 7         |
| 67 | Influence of V/III Ratio of Low Temperature Grown AlN Interlayer on the Growth of GaN on<br>Si<111> Substrate. Japanese Journal of Applied Physics, 2011, 50, 105501.                                                                                          | 1.5 | 6         |
| 68 | Studies on up-converting Ho 3+ -Yb 3+ -F â^ tri-doped TiO 2 nanoparticles for enhancing efficiency of dye-sensitized solar cells. Optical Materials, 2017, 69, 219-225.                                                                                        | 3.6 | 6         |
| 69 | Colloidally synthesized MoSe2 nano-flowers anchored on three-dimensional porous reduced graphene oxide thin films as advanced counter electrode for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2017, 28, 15418-15422. | 2.2 | 6         |
| 70 | Chemical vapor deposition of two-dimensional SnS2 nanoflakes and flower-shaped SnS2. Journal of<br>Materials Science: Materials in Electronics, 2018, 29, 16057-16063.                                                                                         | 2.2 | 6         |
| 71 | <i>Q</i> -switched ytterbium fiber laser based on rhenium diselenide as a saturable absorber. Journal<br>Physics D: Applied Physics, 2019, 52, 465101.                                                                                                         | 2.8 | 6         |
| 72 | Experimental Observation of Ultrahigh Mobility Anisotropy of Organic Semiconductors in the Two-Dimensional Limit. ACS Applied Electronic Materials, 2020, 2, 2888-2894.                                                                                        | 4.3 | 6         |

Үи Zhao

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Metal–organic framework-derived cobalt diselenide as an efficient electrocatalyst for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 12309-12316.                          | 2.2 | 6         |
| 74 | Nonlayered In <sub>2</sub> S <sub>3</sub> /Al <sub>2</sub> O <sub>3</sub> /CsPbBr <sub>3</sub><br>Quantum Dot Heterojunctions for Sensitive and Stable Photodetectors. ACS Applied Nano Materials,<br>2021, 4, 5106-5114. | 5.0 | 6         |
| 75 | Aggregationâ€Induced Emission Luminogens for Direct Exfoliation of 2D Layered Materials in Ethanol.<br>Advanced Materials Interfaces, 2020, 7, 2000795.                                                                   | 3.7 | 5         |
| 76 | Layer-dependent electrical transport property of two-dimensional ReS2 thin films. Journal of<br>Materials Science: Materials in Electronics, 2021, 32, 24342-24350.                                                       | 2.2 | 5         |
| 77 | Near-infrared upconversion of Nd through Gd-mediated interfacial energy transfer in core-shell nanoparticles. Optical Materials Express, 2018, 8, 2449.                                                                   | 3.0 | 4         |
| 78 | Uniform and electroforming-free resistive memory devices based on solution-processed triple-layered NiO/Al2O3 thin films. Applied Physics A: Materials Science and Processing, 2019, 125, 1.                              | 2.3 | 4         |
| 79 | Light Output Enhancement of GaN-Based Light-Emitting Diodes Based on AlN/GaN Distributed Bragg<br>Reflectors Grown on Si (111) Substrates. Crystals, 2020, 10, 772.                                                       | 2.2 | 4         |
| 80 | An artificial optoelectronic nociceptor based on In <sub>2</sub> S <sub>3</sub> memristor. Journal Physics D: Applied Physics, 2022, 55, 125401.                                                                          | 2.8 | 4         |
| 81 | Influence of Deposition Parameters on the Morphology, Structural, and Optical Properties of ZnSe<br>Nanocrystalline Thin Films. Journal of Electronic Materials, 2013, 42, 684-691.                                       | 2.2 | 3         |
| 82 | Synthesis of nanostructured CuInS2 thin films and their application in dye-sensitized solar cells.<br>Applied Physics A: Materials Science and Processing, 2016, 122, 1.                                                  | 2.3 | 3         |
| 83 | Effect of solution concentration on the properties of Cu2ZnSnS4 nanocrystalline thin films prepared by microwave irradiation. Journal of Materials Science: Materials in Electronics, 2017, 28, 3407-3414.                | 2.2 | 3         |
| 84 | Photon upconversion in Yb/Tb co-sensitized core-shell nanocrystals by interfacial energy transfer.<br>Optical Materials Express, 2017, 7, 1022.                                                                           | 3.0 | 3         |
| 85 | Controlling the morphology of ultrathin MoS2/MoO2 nanosheets grown by chemical vapor<br>deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, 05G509.                             | 2.1 | 3         |
| 86 | Effect of Cs+ Fraction on Photovoltaic Performance of Perovskite Solar Cells Based on CsxMA1â^'xPbI3<br>Absorption Layers. Journal of Electronic Materials, 2020, 49, 7044-7053.                                          | 2.2 | 3         |
| 87 | Atomic Intercalation Induced Spin-Flip Transition in Bilayer CrI3. Nanomaterials, 2022, 12, 1420.                                                                                                                         | 4.1 | 3         |
| 88 | High Quality GaN Grown on Si(111) Using Fast Coalescence Growth. Japanese Journal of Applied Physics, 2011, 50, 121001.                                                                                                   | 1.5 | 2         |
| 89 | High-Power Light-Emitting Diodes Package With Phase Change Material. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4, 1747-1753.                                                         | 2.5 | 2         |
| 90 | Growth of nanosheet array and nanosheet microsphere CuInS2 thin films on transparent conducting substrates. Electronic Materials Letters, 2014, 10, 1075-1079.                                                            | 2.2 | 2         |

Үи Ζнао

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Enhanced light extraction of GaN-based light-emitting diodes with periodic textured SiO <sub>2</sub><br>on Al-doped ZnO transparent conductive layer. Chinese Physics B, 2016, 25, 078502.                          | 1.4 | 2         |
| 92 | Effects of mixed solvent on morphology of CH3NH3PbI3 absorption layers and photovoltaic<br>performance of perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29,<br>18868-18877. | 2.2 | 2         |
| 93 | A new circular spinneret system for electrospinning numerical approach and electric field optimization. Thermal Science, 2019, 23, 2229-2235.                                                                       | 1.1 | 2         |
| 94 | Effect of FA+ Fraction and Dipping Time on Performance of FAxMA1â^'xPbI3 Films and Perovskite Solar<br>Cells. Journal of Electronic Materials, 2020, 49, 7054-7064.                                                 | 2.2 | 1         |
| 95 | Anchoring CoS on three-dimensional porous rGO thin films as efficient counter electrodes for<br>dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 22546-22553.          | 2.2 | 1         |
| 96 | Design and tolerance analysis of photonic crystal slabs with ultrahigh reflection. Optical Engineering, 2011, 50, 114602.                                                                                           | 1.0 | 0         |
| 97 | Study of MAPb(I1â^'xBrx)3 thin film and perovskite solar cells based on hole transport material-free and carbon electrode. Journal of Materials Science: Materials in Electronics, 2022, 33, 2654.                  | 2.2 | Ο         |
| 98 | Ti3C2Tx MXene Quantum Dots with Surface-Terminated Groups (-F, -OH, =O, -Cl) for Ultrafast<br>Photonics. Nanomaterials, 2022, 12, 2043.                                                                             | 4.1 | 0         |