
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2874414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computer simulations of Hall thrusters without wall losses designed using two permanent magnetic rings. Journal Physics D: Applied Physics, 2016, 49, 465001.	2.8	35
2	Stabilizing of low frequency oscillation in Hall thrusters. Physics of Plasmas, 2008, 15, 113503.	1.9	32
3	Influence of hollow anode position on the performance of a hall-effect thruster with double-peak magnetic field. Vacuum, 2017, 143, 251-261.	3.5	32
4	Effect of oblique channel on discharge characteristics of 200-W Hall thruster. Physics of Plasmas, 2017, 24, .	1.9	26
5	Effect of ionization distribution on the low frequency oscillations mode in Hall thrusters. Physics of Plasmas, 2012, 19, .	1.9	22
6	A 200ÂW Hall thruster with hollow indented anode. Acta Astronautica, 2017, 139, 521-527.	3.2	22
7	Application of hollow anodes in a Hall thruster with double-peak magnetic fields. Journal Physics D: Applied Physics, 2017, 50, 335201.	2.8	17
8	Effects of magnetic field intensity on ionic wind characteristics. Journal of Electrostatics, 2018, 96, 99-103.	1.9	17
9	Performance characteristics of No-Wall-Losses Hall Thruster. European Physical Journal: Special Topics, 2017, 226, 2945-2953.	2.6	16
10	Study on the peak current of power supply during a Hall thruster start-up. Vacuum, 2016, 123, 126-130.	3.5	15
11	Experimental study on low frequency oscillation in a plume of Hall thrusters. Plasma Sources Science and Technology, 2008, 17, 035022.	3.1	14
12	Characterization of coupling oscillation in Hall thrusters. Plasma Sources Science and Technology, 2009, 18, 045020.	3.1	14
13	Experimental test of 200 W Hall thruster with titanium wall. Japanese Journal of Applied Physics, 2017, 56, 050312.	1.5	13
14	Effect of relative position between cathode and magnetic separatrix on the discharge characteristic of Hall thrusters. Vacuum, 2018, 154, 167-173.	3.5	13
15	Simulation research on magnetic pole erosion of Hall thrusters. Physics of Plasmas, 2019, 26, .	1.9	13
16	Experimental study on the role of a resistor in the filter of Hall thrusters. Physics of Plasmas, 2011, 18, 063508.	1.9	12
17	Effects of magnetic field strength on the low frequency oscillation in Hall thrusters. Physics of Plasmas, 2011, 18, 013507.	1.9	12
18	Effect of double-stage discharge on the performance of a multi-mode Hall thruster. Vacuum, 2016, 131, 312-318.	3.5	12

#	Article	IF	CITATIONS
19	Visual evidence of suppressing the ion and electron energy loss on the wall in Hall thrusters. Japanese Journal of Applied Physics, 2017, 56, 038001.	1.5	12
20	Effect of discharge parameters on pulse current during hall thruster start-up. Vacuum, 2017, 136, 77-81.	3.5	12
21	Effect of matching between the magnetic field and channel length on the performance of low sputtering Hall thrusters. Advances in Space Research, 2018, 61, 837-843.	2.6	12
22	Study on breathing mode oscillation suppression of self-excited Hall thrusters. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	2.1	11
23	Effect of vortex inlet mode on low-power cylindrical Hall thruster. Physics of Plasmas, 2017, 24, .	1.9	11
24	A 200-W permanent magnet Hall thruster discharge with graphite channel wall. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 3079-3082.	2.1	11
25	The characteristics of ion wind thruster based on dielectric barrier discharge in near space. Vacuum, 2022, 195, 110689.	3.5	11
26	Mode transition induced by the magnetic field gradient in Hall thrusters. Journal Physics D: Applied Physics, 2016, 49, 375203.	2.8	10
27	A type of cylindrical Hall thruster with a magnetically insulated anode. Journal Physics D: Applied Physics, 2017, 50, 145203.	2.8	10
28	High-Speed Camera Imaging in the Discharge Channel During a Hall Thruster Ignition. IEEE Transactions on Plasma Science, 2018, 46, 1058-1061.	1.3	10
29	Effects of the peak magnetic field location on discharge performance of a 100-W Hall thruster with large gradient magnetic field. Vacuum, 2022, 199, 110965.	3.5	10
30	Effect of azimuthal diversion rail on an ATON-type Hall thruster. Journal Physics D: Applied Physics, 2017, 50, 095202.	2.8	9
31	Effects of operating parameters on ionization distribution in Hall thrusters. Applied Physics Letters, 2013, 102, .	3.3	8
32	Overview of Hall Electric Propulsion in China. IEEE Transactions on Plasma Science, 2018, 46, 263-282.	1.3	8
33	Simulation of plasma dynamics during discharge ignition in Hall thruster. European Physical Journal D, 2019, 73, 1.	1.3	8
34	Effects of the peak magnetic field position on Hall thruster discharge characteristics. Advances in Space Research, 2020, 66, 2024-2034.	2.6	8
35	Influence of pulse frequency on discharge characteristics of micro-cathode arc thruster. Vacuum, 2022, 196, 110748.	3.5	8
36	On the frequency characteristic of inductor in the filter of Hall thrusters. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, L9-L13.	2.1	7

#	Article	lF	CITATIONS
37	Simulation of double stage hall thruster with double-peaked magnetic field. European Physical Journal D, 2017, 71, 1.	1.3	7
38	Extending service life of hall thrusters: recent progress and future challenges. Reviews of Modern Plasma Physics, 2019, 3, 1.	4.1	7
39	Effect of azimuthal diversion rail location on the performance of Hall thrusters. Vacuum, 2019, 159, 299-305.	3.5	7
40	Experimental Study of the Effects of Magnetic Field Intensity on Trichel Pulses. IEEE Transactions on Plasma Science, 2016, 44, 2644-2647.	1.3	6
41	Stabilizing low-frequency oscillation with two-stage filter in Hall thrusters. Review of Scientific Instruments, 2017, 88, 073502.	1.3	6
42	Hall thruster plume divergence angle assessment method based on image processing. Measurement: Journal of the International Measurement Confederation, 2014, 50, 74-77.	5.0	5
43	Comparative Study of Annular–Cylindrical Combined Channel With Annular Channel Hall Thruster. IEEE Transactions on Plasma Science, 2018, 46, 4051-4059.	1.3	5
44	Numerical simulation of the effect of backpressure on the discharge characteristics of a Hall effect thruster. European Physical Journal D, 2020, 74, 1.	1.3	5
45	Simulation of Pole Erosion in Magnetically Shielded and Unshielded Hall Thrusters. IEEE Transactions on Plasma Science, 2021, 49, 1351-1356.	1.3	5
46	Low-frequency-oscillation characteristics of ionization distribution in Hall thruster channels. Vacuum, 2021, 190, 110320.	3.5	5
47	Multiple ionization characteristics of hall thruster with large height–radius ratio and their effects. Physics of Plasmas, 2021, 28, .	1.9	5
48	Effect of dynamic permittivity in low-pressure environment on performance of surface dielectric barrier discharge ion wind thruster. Vacuum, 2022, 201, 111111.	3.5	5
49	Modulating action of low frequency oscillations on high frequency instabilities in Hall thrusters. Journal of Applied Physics, 2015, 117, 053301.	2.5	4
50	Hysteresis in stabilization of methane diffusion flames with plasmas. Fuel, 2016, 179, 362-367.	6.4	4
51	Recent progress in research on micro-cathode arc thrusters. European Physical Journal D, 2020, 74, 1.	1.3	4
52	Study on the influence of the discharge voltage on the ignition process of Hall thrusters. Plasma Science and Technology, 2020, 22, 094004.	1.5	4
53	Effects of Magnetic Field Configuration on Ionic Wind Characteristics. IEEE Transactions on Plasma Science, 2021, 49, 1448-1453.	1.3	4
54	Characterizing low-frequency oscillation of Hall thrusters by dielectric wall temperature variation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 030604.	2.1	3

#	Article	IF	CITATIONS
55	An experimental setup for hollow cathode independent life test simulating Hall thruster discharge current oscillations. Advances in Space Research, 2018, 62, 2551-2555.	2.6	3
56	Measurement method for plume divergence angle of Hall thrusters. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 012902.	1.2	3
57	Note: An approach to measurement of low frequency oscillation amplitude of discharge current of in-orbit Hall thruster. Review of Scientific Instruments, 2014, 85, 066113.	1.3	2
58	Study of lowâ€frequency oscillations in a doubleâ€stage Hall thruster. Contributions To Plasma Physics, 2017, 57, 99-105.	1.1	2
59	Analysis on dielectric loss characteristics of polyvinylidene fluoride and its composites. Journal of Materials Science: Materials in Electronics, 2021, 32, 26268-26290.	2.2	2
60	Coupling intensity between discharge and magnetic circuit in Hall thrusters. European Physical Journal D, 2017, 71, 1.	1.3	1
61	Effect of magnetic field directionality on discharging characteristics of Hall effect thruster with azimuthal diversion rail. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 062801.	1.2	1
62	A newly designed ignition method for miniature radio frequency ion thruster. Review of Scientific Instruments, 2022, 93, 033506.	1.3	1
63	Research progress on the ignition reliability of Hall thruster in HIT. , 2019, , .		0
64	Newly designed ignition circuit to improve the ignition reliability of Hall thruster. AIP Advances, 2022, 12, 055112.	1.3	0