
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2874143/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue and<br>Cell, 1998, 30, 127-135.                                                                                | 1.0 | 150       |
| 2  | Mesenchymal stem cells and hypoxia: Where are we?. Mitochondrion, 2014, 19, 105-112.                                                                                                                         | 1.6 | 110       |
| 3  | Subendothelial smooth muscle cells of human aorta express macrophage antigen in situ and in vitro.<br>Atherosclerosis, 1997, 135, 19-27.                                                                     | 0.4 | 104       |
| 4  | Lipids in cells of atherosclerotic and uninvolved human aorta. Experimental and Molecular<br>Pathology, 1985, 42, 117-137.                                                                                   | 0.9 | 97        |
| 5  | Collagen-synthesizing cells in initial and advanced atherosclerotic lesions of human aorta.<br>Atherosclerosis, 1997, 130, 133-142.                                                                          | 0.4 | 50        |
| 6  | Low ATP level is sufficient to maintain the uncommitted state of multipotent mesenchymal stem cells.<br>Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4418-4425.                             | 1.1 | 44        |
| 7  | Characteristics of human lipoaspirate-isolated mesenchymal stromal cells cultivated under lower oxygen tension. Cell and Tissue Biology, 2009, 3, 23-28.                                                     | 0.2 | 42        |
| 8  | Interaction of multipotent mesenchymal stromal and immune cells: Bidirectional effects. Cytotherapy, 2017, 19, 1152-1166.                                                                                    | 0.3 | 41        |
| 9  | Crash sign: new firstâ€ŧrimester sonographic marker of spina bifida. Ultrasound in Obstetrics and<br>Gynecology, 2019, 54, 740-745.                                                                          | 0.9 | 37        |
| 10 | Peculiarities of cell composition and cell proliferation in different type atherosclerotic lesions in carotid and coronary arteries. Atherosclerosis, 2010, 212, 436-443.                                    | 0.4 | 35        |
| 11 | Macroporous modified poly (vinyl alcohol) hydrogels with charged groups for tissue engineering:<br>Preparation and in vitro evaluation. Materials Science and Engineering C, 2017, 75, 1075-1082.            | 3.8 | 25        |
| 12 | Dissociated Cells from Different Layers of Adult Human Aortic Wall. Cells Tissues Organs, 1984, 119,<br>99-105.                                                                                              | 1.3 | 24        |
| 13 | Adult human aortic cells in primary culture: heterogeneity in shape. Heart and Vessels, 1986, 2, 193-201.                                                                                                    | 0.5 | 24        |
| 14 | Gap junctional communication in primary culture of cells derived from human aortic intima. Tissue and Cell, 1995, 27, 591-597.                                                                               | 1.0 | 24        |
| 15 | Low-dose photodynamic therapy promotes angiogenic potential and increases immunogenicity of<br>human mesenchymal stromal cells. Journal of Photochemistry and Photobiology B: Biology, 2019, 199,<br>111596. | 1.7 | 24        |
| 16 | Content and localization of fibronectin in normal intima, atherosclerotic plaque, and underlying media of human aorta. Atherosclerosis, 1984, 53, 213-219.                                                   | 0.4 | 23        |
| 17 | ?Regression? of atherosclerosis in cell culture: Effects of stable prostacyclin analogues. Drug<br>Development Research, 1986, 9, 189-201.                                                                   | 1.4 | 21        |
| 18 | WNT-associated gene expression in human mesenchymal stromal cells under hypoxic stress. Doklady<br>Biochemistry and Biophysics, 2015, 465, 354-357.                                                          | 0.3 | 21        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Lipids in cells of atherosclerotic and uninvolved human aorta. Experimental and Molecular<br>Pathology, 1991, 54, 22-30.                                                                                                             | 0.9 | 20        |
| 20 | Correlation between lipid deposition, immune-inflammatory cell content and MHC class II expression in diffuse intimal thickening of the human aorta. Atherosclerosis, 2011, 219, 171-183.                                            | 0.4 | 20        |
| 21 | The ICAMâ€1 expression level determines the susceptibility of human endothelial cells to simulated microgravity. Journal of Cellular Biochemistry, 2018, 119, 2875-2885.                                                             | 1.2 | 20        |
| 22 | Stellate cells of aortic intima: II. Arborization of intimal cells in culture. Tissue and Cell, 1992, 24, 697-704.                                                                                                                   | 1.0 | 19        |
| 23 | Tissue-Related Hypoxia Attenuates Proinflammatory Effects of Allogeneic PBMCs on Adipose-Derived Stromal Cells <i>In Vitro</i> . Stem Cells International, 2016, 2016, 1-13.                                                         | 1.2 | 18        |
| 24 | Myeloid Precursors in the Bone Marrow of Mice after a 30-Day Space Mission on a Bion-M1<br>Biosatellite. Bulletin of Experimental Biology and Medicine, 2017, 162, 496-500.                                                          | 0.3 | 18        |
| 25 | IFNâ€gamma priming of adiposeâ€derived stromal cells at "physiological―hypoxia. Journal of Cellular<br>Physiology, 2018, 233, 1535-1547.                                                                                             | 2.0 | 18        |
| 26 | Response of Adipose Tissue-Derived Stromal Cells in Tissue-Related O <sub>2</sub><br>Microenvironment to Short-Term Hypoxic Stress. Cells Tissues Organs, 2014, 200, 307-315.                                                        | 1.3 | 17        |
| 27 | Cellular mechanisms of human atherosclerosis: Role of cell-to-cell communications in subendothelial cell functions. Tissue and Cell, 2016, 48, 25-34.                                                                                | 1.0 | 17        |
| 28 | Factors governing the immunosuppressive effects of multipotent mesenchymal stromal cells in vitro.<br>Cytotechnology, 2016, 68, 565-577.                                                                                             | 0.7 | 17        |
| 29 | Activation of ganglioside GM3 biosynthesis in human monocyte/macrophages during culturing in vitro. Biochemistry (Moscow), 2007, 72, 772-777.                                                                                        | 0.7 | 16        |
| 30 | Low Level of O2 Inhibits Commitment of Cultured Mesenchymal Stromal Precursor Cells from the<br>Adipose Tissue in Response to Osteogenic Stimuli. Bulletin of Experimental Biology and Medicine, 2009,<br>147, 760-763.              | 0.3 | 16        |
| 31 | Enhancing of GM3 synthase expression during differentiation of human blood monocytes into macrophages as in vitro model of GM3 accumulation in atherosclerotic lesion. Molecular and Cellular Biochemistry, 2009, 330, 121-129.      | 1.4 | 16        |
| 32 | Heterogeneity of smooth muscle cells in embryonic human aorta. Tissue and Cell, 1995, 27, 31-38.                                                                                                                                     | 1.0 | 14        |
| 33 | Polyelectrolyte microcapsules with entrapped multicellular tumor spheroids as a novel tool to study the effects of photodynamic therapy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 97B, 255-262. | 1.6 | 14        |
| 34 | Adipose-derived stromal cell immunosuppression of T cells is enhanced under "physiological―hypoxia.<br>Tissue and Cell, 2020, 63, 101320.                                                                                            | 1.0 | 14        |
| 35 | Stellate cells of aortic intima: I. Human and rabbit. Tissue and Cell, 1992, 24, 689-696.                                                                                                                                            | 1.0 | 13        |
| 36 | The impact of oxygen in physiological regulation of human multipotent mesenchymal cell functions.<br>Human Physiology, 2012, 38, 444-452.                                                                                            | 0.1 | 12        |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Enrichment of Umbilical Cord Blood Mononuclears with Hemopoietic Precursors in Co-Culture with<br>Mesenchymal Stromal Cells from Human Adipose Tissue. Bulletin of Experimental Biology and<br>Medicine, 2014, 156, 584-589.                               | 0.3 | 12        |
| 38 | Proinflammatory interleukins' production by adipose tissueâ€derived mesenchymal stromal cells: the<br>impact of cell culture conditions and cellâ€ŧo ell interaction. Cell Biochemistry and Function, 2015, 33,<br>385-392.                                | 1.4 | 12        |
| 39 | Human Adipose-Tissue Derived Stromal Cells in Combination with Hypoxia Effectively Support Ex Vivo<br>Expansion of Cord Blood Haematopoietic Progenitors. PLoS ONE, 2015, 10, e0124939.                                                                    | 1.1 | 12        |
| 40 | Acute Hypoxic Stress Affects Migration Machinery of Tissue O <sub>2</sub> -Adapted Adipose Stromal Cells. Stem Cells International, 2016, 2016, 1-16.                                                                                                      | 1.2 | 12        |
| 41 | Ex Vivo Expansion of Hematopoietic Stem and Progenitor Cells from Umbilical Cord Blood. Acta<br>Naturae, 2016, 8, 6-16.                                                                                                                                    | 1.7 | 12        |
| 42 | Beta-blockers: propranolol, metoprolol, atenolol, pindolol, alprenolol and timolol, manifest<br>atherogenicity on in vitro, ex vivo and in vivo models. Elimination of propranolol atherogenic effects<br>by papaverine. Atherosclerosis, 1992, 95, 77-85. | 0.4 | 10        |
| 43 | Human MMSC immunosuppressive activity at low oxygen tension: Direct cell-to-cell contacts and paracrine regulation. Human Physiology, 2013, 39, 136-146.                                                                                                   | 0.1 | 10        |
| 44 | Interaction of human mesenhymal stromal with immune cells. Human Physiology, 2010, 36, 590-598.                                                                                                                                                            | 0.1 | 9         |
| 45 | Subpopulation Composition and Activation of T Lymphocytes during Coculturing with Mesenchymal<br>Stromal Cells in Medium with Different O2 Content. Bulletin of Experimental Biology and Medicine,<br>2011, 151, 344-346.                                  | 0.3 | 9         |
| 46 | Stromal and Hematopoietic Progenitors from C57/BI/6N Murine Bone Marrow After 30-Day "BION-M1―<br>Spaceflight. Stem Cells and Development, 2018, 27, 1268-1277.                                                                                            | 1.1 | 9         |
| 47 | Interaction of allogeneic adipose tissue-derived stromal cells and unstimulated immune cells in vitro:<br>the impact of cell-to-cell contact and hypoxia in the local milieu. Cytotechnology, 2018, 70, 299-312.                                           | 0.7 | 9         |
| 48 | Lipid accumulation in the subendothelial cells of human aortic intima impairs cell-to-cell contacts: A comparative study in situ and in vitro. Cardiovascular Pathology, 1993, 2, 53-62.                                                                   | 0.7 | 7         |
| 49 | Paracrine activity of multipotent mesenchymal stromal cells and its modulation in hypoxia. Human<br>Physiology, 2013, 39, 315-322.                                                                                                                         | 0.1 | 7         |
| 50 | Simulated microgravity modulates the mesenchymal stromal cell response to inflammatory stimulation. Scientific Reports, 2019, 9, 9279.                                                                                                                     | 1.6 | 7         |
| 51 | Reciprocal modulation of cell functions upon direct interaction of adipose mesenchymal stromal and activated immune cells. Cell Biochemistry and Function, 2019, 37, 228-238.                                                                              | 1.4 | 7         |
| 52 | Hematopoiesis-supportive function of growth-arrested human adipose-tissue stromal cells under physiological hypoxia. Journal of Bioscience and Bioengineering, 2019, 127, 647-654.                                                                         | 1.1 | 7         |
| 53 | Immunosuppressive Effects of Multipotent Mesenchymal Stromal Cells in Cultures with Different O2<br>Content in the Medium. Bulletin of Experimental Biology and Medicine, 2011, 151, 526-529.                                                              | 0.3 | 6         |
| 54 | Evaluation of committed and primitive cord blood progenitors after expansion on adipose stromal cells. Cell and Tissue Research, 2018, 372, 523-533.                                                                                                       | 1.5 | 6         |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Endothelial Cells Modulate Differentiation Potential and Mobility of Mesenchymal Stromal Cells.<br>Bulletin of Experimental Biology and Medicine, 2018, 165, 127-131.                                                                  | 0.3 | 6         |
| 56 | Lipid second messengers and cell signaling in vascular wall. Biochemistry (Moscow), 2007, 72, 797-808.                                                                                                                                 | 0.7 | 5         |
| 57 | New medicines and approaches to treatment of atherosclerosis. Russian Journal of General Chemistry, 2012, 82, 554-563.                                                                                                                 | 0.3 | 5         |
| 58 | In Vitro Study of Interactions between Silicon-Containing Nanoparticles and Human Peripheral Blood<br>Leukocytes. Bulletin of Experimental Biology and Medicine, 2013, 155, 396-398.                                                   | 0.3 | 5         |
| 59 | The Role of Interplay of Mesenchymal Stromal Cells and Macrophages in Physiological and Reparative<br>Tissue Remodeling. Human Physiology, 2018, 44, 102-114.                                                                          | 0.1 | 5         |
| 60 | Multipotent Mesenchymal Stromal Cells and Extracellular Matrix: Regulation under Hypoxia. Human<br>Physiology, 2018, 44, 696-705.                                                                                                      | 0.1 | 5         |
| 61 | Etoposide and Hypoxia Do Not Activate Apoptosis of Multipotent Mesenchymal Stromal Cells In Vitro.<br>Bulletin of Experimental Biology and Medicine, 2012, 154, 141-144.                                                               | 0.3 | 4         |
| 62 | The Differential Expression of Adhesion Molecule and Extracellular Matrix Genes in Mesenchymal<br>Stromal Cells after Interaction with Cord Blood Hematopoietic Progenitors. Doklady Biochemistry<br>and Biophysics, 2018, 479, 69-71. | 0.3 | 4         |
| 63 | Effects of hypoxic gas mixtures on viability, expression of adhesion molecules, migration, and<br>synthesis of interleukins by cultured human endothelial cells. Bulletin of Experimental Biology and<br>Medicine, 2007, 144, 130-135. | 0.3 | 3         |
| 64 | Modification of silicon nanoparticle surface with gold or silver attenuates its biocompatibility in vitro. Cell and Tissue Biology, 2014, 8, 384-388.                                                                                  | 0.2 | 3         |
| 65 | Hypoxic stress as an activation trigger of multipotent mesenchymal stromal cells. Human Physiology, 2015, 41, 218-222.                                                                                                                 | 0.1 | 3         |
| 66 | Immobilized phthalocyanines of magnesium, aluminum, and zinc in photodynamic treatment of mesenchymal stromal cells. Russian Chemical Bulletin, 2016, 65, 277-281.                                                                     | 0.4 | 3         |
| 67 | Immunocytochemical study of the localization of scavenger receptor in human aortic smooth-muscle cells. Bulletin of Experimental Biology and Medicine, 1995, 120, 839-842.                                                             | 0.3 | 2         |
| 68 | Effects of photodynamic treatment on mesenchymal stromal cells. Doklady Biological Sciences, 2013,<br>450, 185-188.                                                                                                                    | 0.2 | 2         |
| 69 | Photophysical properties and photodynamic activity of nanostructured aluminum phthalocyanines.<br>Biophysics (Russian Federation), 2014, 59, 854-860.                                                                                  | 0.2 | 2         |
| 70 | In vitro evaluation of crystalline silicon nanoparticles cytotoxicity. Biophysics (Russian Federation), 2014, 59, 105-109.                                                                                                             | 0.2 | 2         |
| 71 | Selection of the Optimal Protocol for Preparation of a Decellularized Extracellular Matrix of Human<br>Adipose Tissue-Derived Mesenchymal Stromal Cells. Moscow University Biological Sciences Bulletin,<br>2019, 74, 235-239.         | 0.1 | 2         |
| 72 | Phenotype and Secretome of Monocyte-Derived Macrophages Interacting with Mesenchymal Stromal<br>Cells under Conditions of Hypoxic Stress. Bulletin of Experimental Biology and Medicine, 2019, 168,<br>125-131.                        | 0.3 | 2         |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Adipose tissue-derived stromal cells retain immunosuppressive and angiogenic activity after<br>coculture with cord blood hematopoietic precursors. European Journal of Cell Biology, 2020, 99,<br>151069.   | 1.6 | 2         |
| 74 | Functional Activity of Non-Proliferating Mesenchymal Stromal Cells Cultured at Different Densities.<br>Bulletin of Experimental Biology and Medicine, 2021, 170, 537-543.                                   | 0.3 | 2         |
| 75 | Сord blood hematopoietic stem cells ex vivo enhance the bipotential commitment of adipose mesenchymal stromal progenitors. Life Sciences, 2021, 268, 118970.                                                | 2.0 | 2         |
| 76 | Osteogenic Commitment of MSC Is Enhanced after Interaction with Umbilical Cord Blood<br>Mononuclear Cells In Vitro. Bulletin of Experimental Biology and Medicine, 2021, 171, 541-546.                      | 0.3 | 2         |
| 77 | Crosstalk of Endothelial and Mesenchymal Stromal Cells under Tissue-Related O2. International<br>Journal of Translational Medicine, 2021, 1, 116-136.                                                       | 0.1 | 2         |
| 78 | Metal-free Phtalocyanine and 5-Aminolevulenic Acid in Photodynamic Treatment of Human Vascular<br>Cells. , 2010, , .                                                                                        |     | 1         |
| 79 | Effects of Photodynamic Exposure on Endothelial Cells In Vitro. Bulletin of Experimental Biology and<br>Medicine, 2010, 149, 262-264.                                                                       | 0.3 | 1         |
| 80 | Low-Fluence Photodynamic Treatment Modifies Functional Properties of Vascular Cell Wall. Bulletin of Experimental Biology and Medicine, 2011, 151, 521-525.                                                 | 0.3 | 1         |
| 81 | Immunophenotype of human lymphocytes after interaction with mesenchymal stromal cells. Human<br>Physiology, 2013, 39, 530-534.                                                                              | 0.1 | 1         |
| 82 | The effect of stromal cells and oxygen concentration on maintenance of cord blood hematopoietic precursors. Cell and Tissue Biology, 2015, 9, 341-347.                                                      | 0.2 | 1         |
| 83 | Differential Expression of Bipotent Commitment-Related Genes in Multipotent Mesenchymal Stromal<br>Cells at Different O2 Levels. Doklady Biochemistry and Biophysics, 2020, 491, 67-69.                     | 0.3 | 1         |
| 84 | Short-term reloading after prolonged unloading ensures restoration of stromal but not<br>hematopoietic precursor activity in tibia bone marrow of C57Bl/6N mice. Stem Cells and Development,<br>2021, , .   | 1,1 | 1         |
| 85 | Structural organization and composition of extracellular matrix of multipotent mesenchymal<br>stromal cells under different oxygenlevels in vitro. Clinical and Experimental Morphology, 2020, 9,<br>57-63. | 0.1 | 1         |
| 86 | Simulated Microgravity Affects the TNF-α-Induced Interleukin Profile of Endothelial Cells Depending on the Initial ICAM-1 Expression. Microgravity Science and Technology, 2022, 34, 1.                     | 0.7 | 1         |
| 87 | Immunomorphological investigation of distribution of collagen of types I, III, IV, and V in primary culture of human aortic cells. Bulletin of Experimental Biology and Medicine, 1983, 96, 1473-1476.      | 0.3 | 0         |
| 88 | Atherogenic effect of the beta-blocker propranolol exhibited on the de-endothelized rabbit aorta.<br>Bulletin of Experimental Biology and Medicine, 1991, 111, 485-488.                                     | 0.3 | 0         |
| 89 | Papaverine abolishes the atherogenic effect of the beta-blocker propranolol. Bulletin of Experimental<br>Biology and Medicine, 1992, 113, 353-356.                                                          | 0.3 | 0         |
| 90 | Localization of collagen-producing cells in normal and atherosclerotic intima of human aorta.<br>Bulletin of Experimental Biology and Medicine, 1997, 123, 82-84.                                           | 0.3 | 0         |

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Accumulation and Elimination of Photosens and Protoporphyrin IX by Different Types of Mesenchymal<br>Cells. Bulletin of Experimental Biology and Medicine, 2013, 155, 568-571.    | 0.3 | 0         |
| 92 | Expression of Adhesion Molecules in Activated Endothelium after Interaction with Mesenchymal<br>Stromal Cells. Bulletin of Experimental Biology and Medicine, 2018, 164, 453-455. | 0.3 | 0         |
| 93 | Effect of Short-Term Hypoxic Stress on Immunosuppressive Activity of Perivascular Multipotent<br>Stromal Cells. Moscow University Biological Sciences Bulletin, 2018, 73, 13-17.  | 0.1 | 0         |