Michael S Reid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2873718/publications.pdf Version: 2024-02-01

MICHAEL S REID

#	Article	IF	CITATIONS
1	Current characterization methods for cellulose nanomaterials. Chemical Society Reviews, 2018, 47, 2609-2679.	18.7	690
2	Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production. Langmuir, 2017, 33, 1583-1598.	1.6	382
3	Multifunctional Nanocomposites with High Strength and Capacitance Using 2D MXene and 1D Nanocellulose. Advanced Materials, 2019, 31, e1902977.	11.1	253
4	Eco-Friendly Cellulose Nanofibrils Designed by Nature: Effects from Preserving Native State. ACS Nano, 2020, 14, 724-735.	7.3	130
5	Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose, 2019, 26, 507-528.	2.4	103
6	Cellulose nanocrystal interactions probed by thin film swelling to predict dispersibility. Nanoscale, 2016, 8, 12247-12257.	2.8	71
7	The role of hydrogen bonding in non-ionic polymer adsorption to cellulose nanocrystals and silica colloids. Current Opinion in Colloid and Interface Science, 2017, 29, 76-82.	3.4	51
8	Polymer Films from Cellulose Nanofibrils—Effects from Interfibrillar Interphase on Mechanical Behavior. Macromolecules, 2021, 54, 4443-4452.	2.2	37
9	Effect of Ionic Strength and Surface Charge Density on the Kinetics of Cellulose Nanocrystal Thin Film Swelling. Langmuir, 2017, 33, 7403-7411.	1.6	36
10	One-step in-mould modification of PDMS surfaces and its application in the fabrication of self-driven microfluidic channels. Lab on A Chip, 2015, 15, 4322-4330.	3.1	32
11	Biofabrication of Nanocellulose–Mycelium Hybrid Materials. Advanced Sustainable Systems, 2021, 5, 2000196.	2.7	24
12	Comparison of polyethylene glycol adsorption to nanocellulose versus fumed silica in water. Cellulose, 2017, 24, 4743-4757.	2.4	23
13	Comparing Soft Semicrystalline Polymer Nanocomposites Reinforced with Cellulose Nanocrystals and Fumed Silica. Industrial & Engineering Chemistry Research, 2018, 57, 220-230.	1.8	21
14	Interfacial Polymerization of Cellulose Nanocrystal Polyamide Janus Nanocomposites with Controlled Architectures. ACS Macro Letters, 2019, 8, 1334-1340.	2.3	18
15	On the interaction between PEDOT:PSS and cellulose: Adsorption mechanisms and controlling factors. Carbohydrate Polymers, 2021, 260, 117818.	5.1	18
16	In Situ Modification of Regenerated Cellulose Beads: Creating All-Cellulose Composites. Industrial & Engineering Chemistry Research, 2020, 59, 2968-2976.	1.8	13
17	Surface tailoring of cellulose aerogel-like structures with ultrathin coatings using molecular layer-by-layer assembly. Carbohydrate Polymers, 2022, 282, 119098.	5.1	11
18	Fluorescently labeled cellulose nanofibrils for detection and loss analysis. Carbohydrate Polymers, 2020, 250, 116943.	5.1	8

#	Article	IF	CITATIONS
19	Modification of cellulose through physisorption of cationic bio-based nanolatexes – comparing emulsion polymerization and RAFT-mediated polymerization-induced self-assembly. Green Chemistry, 2021, 23, 2113-2122.	4.6	8
20	Investigating the adsorption of anisotropic diblock copolymer worms onto planar silica and nanocellulose surfaces using a quartz crystal microbalance. Polymer Chemistry, 2021, 12, 6088-6100.	1.9	7
21	Advanced Characterization of Self-Fibrillating Cellulose Fibers and Their Use in Tunable Filters. ACS Applied Materials & amp; Interfaces, 2021, 13, 32467-32478.	4.0	6
22	Tunable Adhesion and Interfacial Structure of Layerâ€by‣ayer Assembled Block coâ€polymer Micelle and Polyelectrolyte Coatings. Advanced Materials Interfaces, 0, , 2200065.	1.9	3
23	Rapidly Prepared Nanocellulose Hybrids as Gas Barrier, Flame Retardant, and Energy Storage Materials. ACS Applied Nano Materials, 0, , .	2.4	2