
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2873646/publications.pdf Version: 2024-02-01

Мілстило Іш

#	Article	IF	CITATIONS
1	Enhancing CO Oxidation Activity <i>via</i> Tuning a Charge Transfer Between Gold Nanoparticles and Supports. Journal of Physical Chemistry C, 2022, 126, 4836-4844.	3.1	1
2	Application of ultrathin TiO ₂ layers in solar energy conversion devices. Energy Science and Engineering, 2022, 10, 1614-1629.	4.0	19
3	Back Cover Image. Energy Science and Engineering, 2022, 10, .	4.0	1
4	Exciton diffusion in solid solutions of luminescent lanthanide β-diketonates. Physical Chemistry Chemical Physics, 2021, 23, 914-920.	2.8	1
5	Design nanoporous metal thin films <i>via</i> solid state interfacial dealloying. Nanoscale, 2021, 13, 17725-17736.	5.6	9
6	The impact of surface composition on the interfacial energetics and photoelectrochemical properties of BiVO4. Nature Energy, 2021, 6, 287-294.	39.5	108
7	Resolving the Evolution of Atomic Layer-Deposited Thin-Film Growth by Continuous <i>In Situ</i> X-Ray Absorption Spectroscopy. Chemistry of Materials, 2021, 33, 1740-1751.	6.7	13
8	Thin-film synthesis of superconductor-on-insulator A15 vanadium silicide. Scientific Reports, 2021, 11, 2358.	3.3	3
9	Probing structures and structural evolution of nanomaterials by X-ray absorption fine structure spectroscopy. , 2021, , .		0
10	Temperature Effect on Photoelectrochemical Water Splitting: A Model Study Based on BiVO ₄ Photoanodes. ACS Applied Materials & Interfaces, 2021, 13, 61227-61236.	8.0	21
11	Polarized Single-Particle Quantum Dot Emitters through Programmable Cluster Assembly. ACS Nano, 2020, 14, 1369-1378.	14.6	34
12	Interstitial Lithium Doping in BiVO ₄ Thin Film Photoanode for Enhanced Solar Water Splitting Activity. Chemistry of Materials, 2020, 32, 6401-6409.	6.7	37
13	Valence-programmable nanoparticle architectures. Nature Communications, 2020, 11, 2279.	12.8	37
14	The Role of Surface Oxygen Vacancies in BiVO ₄ . Chemistry of Materials, 2020, 32, 2899-2909.	6.7	108
15	Mid-infrared frequency doubling using strip-loaded silicon nitride on epitaxial barium titanate thin film waveguides. Optics Letters, 2020, 45, 6358.	3.3	0
16	Mechanistic Insights into Defect-Assisted Carrier Transport in Bismuth Vanadate Photoanodes. Journal of Physical Chemistry C, 2019, 123, 20730-20736.	3.1	32
17	Hydrogen evolution activity tuning <i>via</i> two-dimensional electron accumulation at buried interfaces. Journal of Materials Chemistry A, 2019, 7, 20696-20705.	10.3	11
18	New aspects of improving the performance of WO ₃ thin films for photoelectrochemical water splitting by tuning the ultrathin depletion region. RSC Advances, 2019, 9, 899-905.	3.6	14

#	Article	IF	CITATIONS
19	Bi-continuous pattern formation in thin films <i>via</i> solid-state interfacial dealloying studied by multimodal characterization. Materials Horizons, 2019, 6, 1991-2002.	12.2	28
20	Ultrathin Amorphous Titania on Nanowires: Optimization of Conformal Growth and Elucidation of Atomic-Scale Motifs. Nano Letters, 2019, 19, 3457-3463.	9.1	14
21	Multicomponent Oxynitride Thin Films: Precise Growth Control and Excited State Dynamics. Chemistry of Materials, 2019, 31, 3461-3467.	6.7	7
22	Modulating Carrier Transport via Defect Engineering in Solar Water Splitting Devices. ACS Energy Letters, 2019, 4, 834-843.	17.4	23
23	Broadband mid-infrared second harmonic generation using epitaxial polydomain barium titanate thin films. Photonics Research, 2019, 7, 1193.	7.0	8
24	Engineering the structural, plasmonic, and optical properties of multilayered aluminum-doped zinc oxide metamaterial grown by pulsed laser deposition. Applied Optics, 2019, 58, 5681.	1.8	8
25	Anomalous Conductivity Tailored by Domain-Boundary Transport in Crystalline Bismuth Vanadate Photoanodes. Chemistry of Materials, 2018, 30, 1677-1685.	6.7	35
26	Improved Stability and Performance of Visible Photoelectrochemical Water Splitting on Solution-Processed Organic Semiconductor Thin Films by Ultrathin Metal Oxide Passivation. Chemistry of Materials, 2018, 30, 324-335.	6.7	29
27	Ultrathin Lutetium Oxide Film as an Epitaxial Holeâ€Blocking Layer for Crystalline Bismuth Vanadate Water Splitting Photoanodes. Advanced Functional Materials, 2018, 28, 1705512.	14.9	40
28	Tailoring Surface Opening of Hollow Nanocubes and Their Application as Nanocargo Carriers. ACS Central Science, 2018, 4, 1742-1750.	11.3	13
29	Unconventional Relation between Charge Transport and Photocurrent via Boosting Small Polaron Hopping for Photoelectrochemical Water Splitting. ACS Energy Letters, 2018, 3, 2232-2239.	17.4	61
30	Photoelectrochemical water splitting with a SrTiO ₃ :Nb/SrTiO ₃ n ⁺ –n homojunction structure. Physical Chemistry Chemical Physics, 2017, 19, 2760-2767.	2.8	20
31	Unravelling Photocarrier Dynamics beyond the Space Charge Region for Photoelectrochemical Water Splitting. Chemistry of Materials, 2017, 29, 4036-4043.	6.7	23
32	Surface Proton Transfer Promotes Four-Electron Oxygen Reduction on Gold Nanocrystal Surfaces in Alkaline Solution. Journal of the American Chemical Society, 2017, 139, 7310-7317.	13.7	51
33	Effects of Residual Solvent Molecules Facilitating the Infiltration Synthesis of ZnO in a Nonreactive Polymer. Chemistry of Materials, 2017, 29, 4535-4545.	6.7	24
34	(Invited) Surface Plasmon Resonance Sensors for Biomolecular Chirality. ECS Transactions, 2017, 77, 29-34.	0.5	0
35	Supra-Nanoparticle Functional Assemblies through Programmable Stacking. ACS Nano, 2017, 11, 7036-7048.	14.6	32
36	Developing new understanding of photoelectrochemical water splitting via in-situ techniques: A review on recent progress. Green Energy and Environment, 2017, 2, 100-111.	8.7	76

#	Article	IF	CITATIONS
37	Atomic Layer-Deposited Titanium-Doped Vanadium Oxide Thin Films and Their Thermistor Applications. Journal of Electronic Materials, 2017, 46, 2153-2157.	2.2	12
38	Hydrothermal growth of ZnO nanowire arrays: fine tuning by precursor supersaturation. CrystEngComm, 2017, 19, 584-591.	2.6	15
39	Gas Transport Selectivity of Ultrathin, Nanoporous, Inorganic Membranes Made from Block Copolymer Templates. Chemistry of Materials, 2017, 29, 9572-9578.	6.7	25
40	Influence of Thermal Annealing on Free Carrier Concentration in (GaN) _{1–<i>x</i>} (ZnO) _{<i>x</i>} Semiconductors. Journal of Physical Chemistry C, 2017, 121, 23249-23258.	3.1	8
41	Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering. Applied Physics Letters, 2017, 111, 231901.	3.3	15
42	Structural and optical characterization of highly anisotropic low loss Al:ZnO/ZnO multilayered metamaterial with hyperbolic dispersion grown by pulsed layer deposition. , 2017, , .		0
43	Designing optical metamaterial with hyperbolic dispersion based on an Al:ZnO/ZnO nano-layered structure using the atomic layer deposition technique. Applied Optics, 2016, 55, 2993.	2.1	24
44	Semiconductorâ€Based Photoelectrochemical Water Splitting at the Limit of Very Wide Depletion Region. Advanced Functional Materials, 2016, 26, 219-225.	14.9	39
45	Seedless Growth of Bismuth Nanowire Array via Vacuum Thermal Evaporation. Journal of Visualized Experiments, 2015, , e53396.	0.3	1
46	Quantifying Bulk and Surface Recombination Processes in Nanostructured Water Splitting Photocatalysts via In Situ Ultrafast Spectroscopy. Nano Letters, 2015, 15, 1076-1082.	9.1	50
47	Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks. Nano Letters, 2015, 15, 1751-1758.	9.1	44
48	Charge trapping and de-trapping in isolated CdSe/ZnS nanocrystals under an external electric field: indirect evidence for a permanent dipole moment. Nanoscale, 2015, 7, 14897-14905.	5.6	15
49	Direct Observation of the Redistribution of Sulfur and Polysufides in Li–S Batteries During the First Cycle by In Situ Xâ€Ray Fluorescence Microscopy. Advanced Energy Materials, 2015, 5, 1500072.	19.5	84
50	The role of the domain size and titanium dopant in nanocrystalline hematite thin films for water photolysis. Nanoscale, 2015, 7, 18515-18523.	5.6	17
51	Role of size and defects in ultrafast broadband emission dynamics of ZnO nanostructures. Applied Physics Letters, 2014, 104, .	3.3	21
52	Block copolymer self assembly for design and vapor-phase synthesis of nanostructured antireflective surfaces. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 06FE02.	1.2	10
53	Surface-Energy Induced Formation of Single Crystalline Bismuth Nanowires over Vanadium Thin Film at Room Temperature. Nano Letters, 2014, 14, 5630-5635.	9.1	23
54	Stretchable Photonic Crystal Cavity with Wide Frequency Tunability. Nano Letters, 2013, 13, 248-252.	9.1	50

#	Article	IF	CITATIONS
55	Enhancing Water Splitting Activity and Chemical Stability of Zinc Oxide Nanowire Photoanodes with Ultrathin Titania Shells. Journal of Physical Chemistry C, 2013, 117, 13396-13402.	3.1	164
56	Discrete Nanocubes as Plasmonic Reporters of Molecular Chirality. Nano Letters, 2013, 13, 3145-3151.	9.1	178
57	Water photolysis with a cross-linked titanium dioxidenanowire anode. Chemical Science, 2011, 2, 80-87.	7.4	116
58	Damping of acoustic vibrations in gold nanoparticles. Nature Nanotechnology, 2009, 4, 492-495.	31.5	191
59	Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter. Physical Review Letters, 2009, 102, 107401.	7.8	201
60	Reduced damping of surface plasmons at low temperatures. Physical Review B, 2009, 79, .	3.2	98
61	Dielectric Sensing with Deposited Gold Bipyramids. Journal of Physical Chemistry C, 2008, 112, 19279-19282.	3.1	84
62	Synthesis and Optical Properties of 1D Metal and Core/Shell Colloidal Nanostructures. ACS Symposium Series, 2008, , 63-76.	0.5	0
63	Plasmon-enhanced optical trapping of individual metal nanorods. , 2007, , .		Ο
64	Metallic colloids and their plasmonic properties. , 2007, , .		0
65	Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations. Physical Review B, 2007, 76, .	3.2	127
66	Plasmon resonance-based optical trapping of single and multiple Au nanoparticles. Optics Express, 2007, 15, 12017.	3.4	103
67	Ultrafast Resonant Dynamics of Surface Plasmons in Gold Nanorods. Journal of Physical Chemistry C, 2007, 111, 116-123.	3.1	81
68	Ultrafast Optical Nonlinearities of Single Metal Nanoparticles. Springer Series in Chemical Physics, 2007, , 639-641.	0.2	1
69	Preparation and optical properties of silver chalcogenide coated gold nanorods. Journal of Materials Chemistry, 2006, 16, 3942.	6.7	88
70	Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation. Physical Review B, 2006, 73, .	3.2	120
71	Optical trapping and alignment of single gold nanorods by using plasmon resonances. Optics Letters, 2006, 31, 2075.	3.3	184
72	Optical nonlinearities of metal nanoparticles: single-particle measurements and correlation to structure. , 2006, , .		1

5

#	Article	IF	CITATIONS
73	Optical trapping and alignment of single gold nanorods using plasmon resonances. , 2006, , .		1
74	Ultrafast Optical Nonlinearities of Metal Nanoparticles: Single-Particle Measurements and Correlation to Structure. , 2006, , .		1
75	Ultrafast optical nonlinearities of plasmons in single gold nanorods. , 2005, , .		1
76	Mechanism of Silver(I)-Assisted Growth of Gold Nanorods and Bipyramids. Journal of Physical Chemistry B, 2005, 109, 22192-22200.	2.6	922
77	Synthesis and Optical Characterization of Au/Ag Core/Shell Nanorods. Journal of Physical Chemistry B, 2004, 108, 5882-5888.	2.6	421