Prem P Chapagain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2873636/publications.pdf

Version: 2024-02-01

90 papers 1,780 citations

257101 24 h-index 344852 36 g-index

106 all docs

 $\begin{array}{c} 106 \\ \\ \text{docs citations} \end{array}$

106 times ranked 2563 citing authors

#	Article	IF	CITATIONS
1	Intricate Functions of Matrix Metalloproteinases in Physiological and Pathological Conditions. Journal of Cellular Physiology, 2016, 231, 2599-2621.	2.0	133
2	The importance of culling in Johne's disease control. Journal of Theoretical Biology, 2008, 254, 135-146.	0.8	73
3	The Integrin Binding Peptide, ATN-161, as a Novel Therapy for SARS-CoV-2 Infection. JACC Basic To Translational Science, 2021, 6, 1-8.	1.9	73
4	Mutation-induced changes in the receptor-binding interface of the SARS-CoV-2 Delta variant B.1.617.2 and implications for immune evasion. Biochemical and Biophysical Research Communications, 2021, 574, 14-19.	1.0	70
5	Simulation modeling to evaluate the persistence of Mycobacterium avium subsp. paratuberculosis (MAP) on commercial dairy farms in the United States. Preventive Veterinary Medicine, 2008, 83, 360-380.	0.7	58
6	Indispensable Role of Ion Channels and Transporters in the Auditory System. Journal of Cellular Physiology, 2017, 232, 743-758.	2.0	55
7	Potential RNA-dependent RNA polymerase inhibitors as prospective therapeutics against SARS-CoV-2. Journal of Medical Microbiology, 2020, 69, 864-873.	0.7	49
8	Zika Virus: An Emerging Global Health Threat. Frontiers in Cellular and Infection Microbiology, 2017, 7, 486.	1.8	47
9	The Ebola virus protein VP40 hexamer enhances the clustering of PI(4,5)P ₂ lipids in the plasma membrane. Physical Chemistry Chemical Physics, 2016, 18, 28409-28417.	1.3	44
10	Structures of the kinetically trapped i-motif DNA intermediates. Physical Chemistry Chemical Physics, 2016, 18, 26691-26702.	1.3	43
11	Molecular Dynamics Investigations of the $\hat{l}\pm$ -Helix to \hat{l}^2 -Barrel Conformational Transformation in the RfaH Transcription Factor. Journal of Physical Chemistry B, 2014, 118, 5101-5108.	1.2	40
12	Potential Autoimmunity Resulting from Molecular Mimicry between SARS-CoV-2 Spike and Human Proteins. Viruses, 2022, 14, 1415.	1.5	39
13	A cationic, C-terminal patch and structural rearrangements in Ebola virus matrix VP40 protein control its interactions with phosphatidylserine. Journal of Biological Chemistry, 2018, 293, 3335-3349.	1.6	38
14	A dominant variant in the PDE1C gene is associated with nonsyndromic hearing loss. Human Genetics, 2018, 137, 437-446.	1.8	36
15	Self-organization in protein folding and the hydrophobic interaction. Journal of Chemical Physics, 2005, 123, 054901.	1.2	35
16	Fluorescent protein barrel fluctuations and oxygen diffusion pathways in mCherry. Journal of Chemical Physics, 2011, 135, 235101.	1.2	35
17	DNA supercoiling, a critical signal regulating the basal expression of the lac operon in Escherichia coli. Scientific Reports, 2016, 6, 19243.	1.6	35
18	Membrane association and localization dynamics of the Ebola virus matrix protein VP40. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2012-2020.	1.4	33

#	Article	IF	Citations
19	Exploring Structural and Optical Properties of Fluorescent Proteins by Squeezing: Modeling High-Pressure Effects on the mStrawberry and mCherry Red Fluorescent Proteins. Journal of Physical Chemistry B, 2012, 116, 12426-12440.	1.2	32
20	The effect of heterogeneous infectious period and contagiousness on the dynamics of <i>Salmonella </i> transmission in dairy cattle. Epidemiology and Infection, 2008, 136, 1496-1510.	1.0	31
21	A mathematical model of the dynamics of Salmonella Cerro infection in a US dairy herd. Epidemiology and Infection, 2008, 136, 263-272.	1.0	31
22	Exploring the Diffusion of Molecular Oxygen in the Red Fluorescent Protein mCherry Using Explicit Oxygen Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2013, 117, 2247-2253.	1.2	31
23	Detection of lipid-induced structural changes of the Marburg virus matrix protein VP40 using hydrogen/deuterium exchange-mass spectrometry. Journal of Biological Chemistry, 2017, 292, 6108-6122.	1.6	30
24	Structural and Dynamical Differences in the Spike Protein RBD in the SARS-CoV-2 Variants B.1.1.7 and B.1.351. Journal of Physical Chemistry B, 2021, 125, 7101-7107.	1.2	30
25	The Role of the Interdomain Interactions on RfaH Dynamics and Conformational Transformation. Journal of Physical Chemistry B, 2015, 119, 12750-12759.	1.2	28
26	Molecular mechanisms of pore formation and membrane disruption by the antimicrobial lantibiotic peptide Mutacin 1140. Physical Chemistry Chemical Physics, 2019, 21, 12530-12539.	1.3	27
27	Hydrogen Bond Flexibility Correlates with Stokes Shift in mPlum Variants. Journal of Physical Chemistry B, 2014, 118, 2940-2948.	1.2	26
28	Microfluidics-based selection of red-fluorescent proteins with decreased rates of photobleaching. Integrative Biology (United Kingdom), 2015, 7, 263-273.	0.6	25
29	Significance of the RBD mutations in the SARS-CoV-2 omicron: from spike opening to antibody escape and cell attachment. Physical Chemistry Chemical Physics, 2022, 24, 9123-9129.	1.3	24
30	Interdomain saltâ€bridges in the Ebola virus protein VP40 and their role in domain association and plasma membrane localization. Protein Science, 2016, 25, 1648-1658.	3.1	21
31	Discovery of novel bacterial topoisomerase I inhibitors by use of in silico docking and in vitro assays. Scientific Reports, 2018, 8, 1437.	1.6	21
32	Identification of HMGA2 inhibitors by AlphaScreen-based ultra-high-throughput screening assays. Scientific Reports, 2020, 10, 18850.	1.6	20
33	Molecular Structure and Regulation of P2X Receptors With a Special Emphasis on the Role of P2X ₂ in the Auditory System. Journal of Cellular Physiology, 2016, 231, 1656-1670.	2.0	19
34	ELMOD3, a novel causative gene, associated with human autosomal dominant nonsyndromic and progressive hearing loss. Human Genetics, 2018, 137, 329-342.	1.8	19
35	Graphene-VP40 interactions and potential disruption of the Ebola virus matrix filaments. Biochemical and Biophysical Research Communications, 2017, 493, 176-181.	1.0	18
36	Excluded volume entropic effects on protein unfolding times and intermediary stability. Journal of Chemical Physics, 2004, 120, 2475-2481.	1.2	16

#	Article	IF	CITATIONS
37	Removal of kinetic traps and enhanced protein folding by strategic substitution of amino acids in a model α-helical hairpin peptide. Biopolymers, 2006, 81, 167-178.	1.2	16
38	Plasma membrane association facilitates conformational changes in the Marburg virus protein VP40 dimer. RSC Advances, 2017, 7, 22741-22748.	1.7	15
39	Kinetics of peptide secondary structure conversion during amyloid \hat{l}^2 -protein fibrillogenesis. Journal of Theoretical Biology, 2012, 301, 95-102.	0.8	14
40	Characterization of molecular interactions between <i>Escherichia coli </i> <scp>RNA</scp> polymerase and topoisomerase I by molecular simulations. FEBS Letters, 2016, 590, 2844-2851.	1.3	14
41	Fluorescence from Multiple Chromophore Hydrogen-Bonding States in the Far-Red Protein TagRFP675. Journal of Physical Chemistry Letters, 2016, 7, 3046-3051.	2.1	14
42	Genetic basis of hearing loss in Spanish, Hispanic and Latino populations. Gene, 2018, 647, 297-305.	1.0	14
43	Investigating molecular interactions between oxidized neuroglobin and cytochrome c. Scientific Reports, 2018, 8, 10557.	1.6	14
44	Sampling of states for estimating the folding funnel entropy and energy landscape of a model alpha-helical hairpin peptide. Journal of Chemical Physics, 2007, 127, 075103.	1.2	13
45	Membrane pore formation and ion selectivity of the Ebola virus delta peptide. Physical Chemistry Chemical Physics, 2019, 21, 5578-5585.	1.3	13
46	Lipid-specific oligomerization of the Marburg virus matrix protein VP40 is regulated by two distinct interfaces for virion assembly. Journal of Biological Chemistry, 2021, 296, 100796.	1.6	13
47	Differentiating Parallel and Antiparallel DNA Duplexes in the Gas Phase Using Trapped Ion Mobility Spectrometry. Journal of Physical Chemistry B, 2018, 122, 6855-6861.	1.2	11
48	In-silico identification of the vaccine candidate epitopes against the Lassa virus hemorrhagic fever. Scientific Reports, 2020, 10, 7667.	1.6	11
49	Cysteine Mutations in the Ebolavirus Matrix Protein VP40 Promote Phosphatidylserine Binding by Increasing the Flexibility of a Lipid-Binding Loop. Viruses, 2021, 13, 1375.	1.5	11
50	Ca ²⁺ and Mg ²⁺ modulate conformational dynamics and stability of downstream regulatory element antagonist modulator. Protein Science, 2015, 24, 741-751.	3.1	10
51	Cooperative structural transitions in amyloid-like aggregation. Journal of Chemical Physics, 2017, 146, 135103.	1.2	10
52	In Silico Investigations of Calcium Phosphate Mineralization in Extracellular Vesicles. Journal of Physical Chemistry B, 2018, 122, 3782-3789.	1.2	9
53	Lattice model simulation of interchain protein interactions and the folding dynamics and dimerization of the GCN4 Leucine zipper. Journal of Chemical Physics, 2008, 128, 045106.	1.2	8
54	Domain rearrangement and denaturation in Ebola virus protein VP40. AIP Advances, 2018, 8, 125129.	0.6	8

#	Article	IF	CITATIONS
55	A cylindrical assembly model and dynamics of the Ebola virus VP40 structural matrix. Scientific Reports, 2018, 8, 9776.	1.6	8
56	A Conserved Tryptophan in the Ebola Virus Matrix Protein C-Terminal Domain Is Required for Efficient Virus-Like Particle Formation. Pathogens, 2020, 9, 402.	1.2	8
57	Finite size scaling of structural transitions in a simulated protein with secondary and tertiary structure. Journal of Chemical Physics, 2003, 119, 1174-1180.	1.2	7
58	The trigger sequence in the GCN4 leucine zipper: \hat{l}_{\pm} -helical propensity and multistate dynamics of folding and dimerization. Journal of Chemical Physics, 2008, 129, 175103.	1.2	7
59	Structural propensities and entropy effects in peptide helix-coil transitions. Physical Review E, 2012, 86, 031915.	0.8	7
60	Direct observation of a 91 bp Laclâ€mediated, negatively supercoiled <scp>DNA</scp> loop by atomic force microscope. FEBS Letters, 2016, 590, 613-618.	1.3	7
61	Amino acid 118 in the deafness causing (DFNA20/26) ACTG1 gene is a mutational hot spot. Gene Reports, 2018, 11, 264-269.	0.4	7
62	Conformational Flexibility of the Protein–Protein Interfaces of the Ebola Virus VP40 Structural Matrix Filament. Journal of Physical Chemistry B, 2019, 123, 9045-9053.	1.2	7
63	Covalent Complex of DNA and Bacterial Topoisomerase: Implications in Antibacterial Drug Development. ChemMedChem, 2020, 15, 623-631.	1.6	7
64	Characterization of ATPase Activity of P2RX2 Cation Channel. Frontiers in Physiology, 2016, 7, 186.	1.3	6
65	Role of K-Loop Cysteine Residues in the Marburg Virus Protein VP24–Human Keap1 Complex. ACS Omega, 2018, 3, 18639-18645.	1.6	6
66	Mutation of Hydrophobic Residues in the C-Terminal Domain of the Marburg Virus Matrix Protein VP40 Disrupts Trafficking to the Plasma Membrane. Viruses, 2020, 12, 482.	1.5	6
67	AT-hook peptides bind the major and minor groove of AT-rich DNA duplexes. Nucleic Acids Research, 2022, 50, 2431-2439.	6.5	6
68	Immunomodulatory LncRNA on antisense strand of ICAM-1 augments SARS-CoV-2 infection-associated airway mucoinflammatory phenotype. IScience, 2022, 25, 104685.	1.9	6
69	Stabilization of Native and Non-native Structures by Salt Bridges in a Lattice Model of the GCN4 Leucine Dimer. Journal of Physical Chemistry B, 2010, 114, 796-803.	1.2	5
70	Structural insights into the repair mechanism of AGT for methyl-induced DNA damage. Biological Chemistry, 2021, 402, 1203-1211.	1.2	5
71	Ebola virus protein <scp>VP40</scp> binding to Sec24c for transport to the plasma membrane. Proteins: Structure, Function and Bioinformatics, 2022, 90, 340-350.	1.5	5
72	Lipid II Binding and Transmembrane Properties of Various Antimicrobial Lanthipeptides. Journal of Chemical Theory and Computation, 2022, 18, 516-525.	2.3	5

#	Article	IF	CITATIONS
73	Exploring the Conformational and Binding Dynamics of HMGA2·DNA Complexes Using Trapped Ion Mobility Spectrometry–Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2022, 33, 1103-1112.	1.2	4
74	Pairwise amino acid secondary structural propensities. Physical Review E, 2015, 91, 042709.	0.8	3
7 5	Singleâ€stranded DNA structural diversity: TAGGGT from monomers to dimers to tetramer formation. Rapid Communications in Mass Spectrometry, 2019, 33, 60-65.	0.7	3
76	Incorporation of 5',8-cyclo-2'deoxyadenosines by DNA repair polymerases via base excision repair. DNA Repair, 2022, 109, 103258.	1.3	3
77	Detecting Individual Proteins and Their Surface Charge Variations in Solution by the Potentiometric Nanoimpact Method. ACS Sensors, 2022, 7, 555-563.	4.0	3
78	Self-Organizing Dynamics in Protein Folding. Progress in Molecular Biology and Translational Science, 2008, 84, 1-37.	0.9	2
79	Free-energy landscapes and thermodynamic parameters of complex molecules from nonequilibrium simulation trajectories. Physical Review E, 2011, 83, 061905.	0.8	2
80	Lattice model simulations of the effects of the position of a peptide trigger segment on helix folding and dimerization. Journal of Chemical Physics, 2012, 137, 105103.	1.2	1
81	Computational Simulations of Protein Folding to Engineer Amino Acid Sequences to Encourage Desired Supersecondary Structure Formation. Methods in Molecular Biology, 2012, 932, 191-204.	0.4	1
82	Inhibition of Aminoglycoside 6′-N-acetyltransferase Type Ib (AAC(6′)-Ib): Structure–Activity Relationship of Substituted Pyrrolidine Pentamine Derivatives as Inhibitors. Biomedicines, 2021, 9, 1218.	1.4	1
83	Hydrogen Bond Flexibility and Water Dynamics in the Far Red Fluorescent Protein TagRFP675. Biophysical Journal, 2015, 108, 469a.	0.2	0
84	Publisher's Note: Pairwise amino acid secondary structural propensities [Phys. Rev. E91, 042709 (2015)]. Physical Review E, 2015, 91, .	0.8	0
85	Covalent Complex Model of DNA Topoisomerase and DNA for Molecular Dynamics Simulation. Biophysical Journal, 2018, 114, 340a.	0.2	0
86	Molecular Dynamics Simulations of Conformational Conversions in Transformer Proteins. Methods in Molecular Biology, 2019, 1958, 297-311.	0.4	0
87	EF-hands in Neuronal Calcium Sensor Downstream Regulatory Element Antagonist Modulator Demonstrate Submillimolar Affinity for Li ⁺ : A New Prospect for Li ⁺ Therapy. ACS Chemical Neuroscience, 2020, 11, 2543-2548.	1.7	0
88	Effects of G198R Mutation in the Ebola VP40 Matrix Protein: A Molecular Dynamics Study. Biophysical Journal, 2021, 120, 303a.	0.2	0
89	Alternating access switching in molecular dynamics simulations of PfMATE transporter. Biophysical Journal, 2022, 121, 250a-251a.	0.2	O
90	Effects of sidechain isomerism on polymer-based non-covalent protein delivery. Chemical Communications, 0, , .	2.2	0