
Takayuki Shiraiwa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2873433/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystallography and deformation behavior of α phase precipitate at twin/matrix interface in a cold rolled metastable Ti-12Mo alloy. Journal of Alloys and Compounds, 2022, 892, 162234.	2.8	6
2	Clustering Analysis of Acoustic Emission Signals during Compression Tests in Mille-Feuille Structure Materials. Materials Transactions, 2022, 63, .	0.4	1
3	Mechanical properties and failure mechanisms of Mg-Zn-Y alloys with different extrusion ratio and LPSO volume fraction. Journal of Magnesium and Alloys, 2022, 10, 2158-2172.	5.5	24
4	Effect of macrozones on fatigue crack initiation and propagation mechanisms in a forged ti-6Al-4V alloy under fully-reversed condition. Materialia, 2022, 22, 101401.	1.3	11
5	Exploration of outliers in strength–ductility relationship of dual-phase steels. Science and Technology of Advanced Materials Methods, 2022, 2, 175-197.	0.4	3
6	The effect of the 18R-LPSO phase on the fatigue behavior of extruded Mg/LPSO two-phase alloy through a comparative experimental-numerical study. Journal of Magnesium and Alloys, 2021, 9, 130-143.	5.5	12
7	Micromechanical investigation of the effect of the crystal orientation on the local deformation path and ductile void nucleation in dual-phase steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 141933.	2.6	18
8	Monotonic and cyclic anisotropies of an extruded Mg–Al–Ca–Mn alloy plate: Experiments and crystal plasticity studies. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138753.	2.6	12
9	Acoustic emission analysis using Bayesian model selection for damage characterization in ceramic matrix composites. Journal of the European Ceramic Society, 2020, 40, 2791-2800.	2.8	10
10	Nucleation and propagation modeling of short fatigue crack in rolled bi-modal Ti–6Al–4V alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 790, 139710.	2.6	23
11	Effect of microstructure of simulated heatâ€affected zone on low―to high•ycle fatigue properties of low•arbon steels. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 1239-1249.	1.7	12
12	Acoustic emission analysis during fatigue crack propagation by Bayesian statistical modeling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 778, 139087.	2.6	12
13	Evaluation of hydrogen-induced cracking in high-strength steel welded joints by acoustic emission technique. Materials and Design, 2020, 190, 108573.	3.3	17
14	Multiscale Analysis of MnS Inclusion Distributions in High Strength Steel. ISIJ International, 2020, 60, 1714-1723.	0.6	7
15	Prediction of Fatigue Life of Steels in Consideration of Defect-induced Crack Initiation and Propagation. ISIJ International, 2020, 60, 799-806.	0.6	7
16	Data Assimilation in the Welding Process for Analysis of Weld Toe Geometry and Heat Source Model. ISIJ International, 2020, 60, 1301-1311.	0.6	7
17	Effect of crystallographic orientation and geometrical compatibility on fatigue crack initiation and propagation in rolled Ti-6Al-4V alloy. Acta Materialia, 2019, 177, 56-67.	3.8	112
18	Effect of long period stacking ordered phase on the fatigue properties of extruded Mg-Y-Zn alloys. International Journal of Fatigue, 2019, 128, 105205.	2.8	7

Takayuki Shiraiwa

#	Article	IF	CITATIONS
19	Analysis of kinking and twinning behavior in extruded Mg–Y–Zn alloys by acoustic emission method with supervised machine learning technique. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 768, 138473.	2.6	18
20	Effect of overload on fatigue crack growth behavior of thin copper foil. International Journal of Fatigue, 2019, 126, 202-209.	2.8	5
21	Numerical investigation of the influence of twinning/detwinning on fatigue crack initiation in AZ31 magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 753, 79-90.	2.6	41
22	Fatigue Life Prediction of Welded Joint by Microstructure-based Simulation. MATEC Web of Conferences, 2019, 269, 03005.	0.1	0
23	Prediction of Cyclic Stress–Strain Property of Steels by Crystal Plasticity Simulations and Machine Learning. Materials, 2019, 12, 3668.	1.3	27
24	Numerical investigation of the influence of rolling texture and microstructure on fatigue crack initiation in BCC polycrystals. International Journal of Fatigue, 2018, 107, 72-82.	2.8	32
25	Development of integrated framework for fatigue life prediction in welded structures. Engineering Fracture Mechanics, 2018, 198, 158-170.	2.0	20
26	Prediction of Fatigue Strength in Steels by Linear Regression and Neural Network. Materials Transactions, 2018, 60, 189-198.	0.4	21
27	Modeling and Crystal Plasticity Simulations of Lath Martensitic Steel under Fatigue Loading. Materials Transactions, 2018, 60, 199-206.	0.4	18
28	Evaluation of Mechanical Property of Catheter Shaft under Cyclic Bending. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65, 301-306.	0.1	0
29	Evaluation of the deformation behavior in directionally solidified Mg–Y–Zn alloys containing LPSO phases by AE analysis. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 689, 157-165.	2.6	16
30	Microstructure modeling and crystal plasticity simulations for the evaluation of fatigue crack initiation in α-iron specimen including an elliptic defect. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 695, 165-177.	2.6	60
31	Evaluation of Mechanical Properties of Catheter Shafts under Cyclic Bending. Materials Transactions, 2017, 58, 1049-1054.	0.4	3
32	Fatigue Performance Prediction of Structural Materials by Multi-scale Modeling and Machine Learning. Minerals, Metals and Materials Series, 2017, , 317-326.	0.3	6
33	Fatigue Crack Initiation Simulation in Pure Iron Polycrystalline Aggregate. Materials Transactions, 2016, 57, 1741-1746.	0.4	15
34	AE Analysis of Compression Test with Different Loading Direction of Unidirectional Solidification LPSO-Mg Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2016, 80, 697-701.	0.2	3
35	Investigation of Static and Fatigue Behavior of Periodic Mesh Plates Using Acoustic Emission Method. Materials Transactions, 2015, 56, 576-580.	0.4	0
36	Evaluation of Torsional Fatigue Behavior of Coronary Stents. Materials Transactions, 2015, 56, 1257-1261.	0.4	4

Takayuki Shiraiwa

#	Article	IF	CITATIONS
37	Effect of Specimen Shape on Fatigue Behavior in Thin Pure Copper Sheet for Smart Stress-memory Patch. ISIJ International, 2014, 54, 2342-2348.	0.6	1
38	Detection of Crack Propagation by AE and Evaluation of Fracture Toughness in Various Mg Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2014, 78, 381-387.	0.2	3
39	Detection of Fracture in Structural Adhesive Using RFID Tags. Materials Transactions, 2014, 55, 1722-1726.	0.4	0
40	Effects of Fabrication Method, Shape, Strain and Temperature on Conductive Properties of Smart Stress-Memory Patch. Materials Transactions, 2014, 55, 1464-1470.	0.4	1
41	Strain-Controlled Fatigue Behavior in Thin Pure Copper Sheet for Smart Stress-Memory Patch. Materials Transactions, 2012, 53, 690-695.	0.4	5
42	Fatigue crack behavior of thin copper sheet and its application for smart stress-memory patch. Strength, Fracture and Complexity, 2011, 7, 205-214.	0.2	1
43	Fatigue Crack Length Measurement of Sputtered Metal Film for RFID-based Smart Stress Memory Patch. ISIJ International, 2011, 51, 1480-1486.	0.6	9
44	Evaluation of Fatigue Properties of Steel Bar by Smart Stress-memory Patch. ISIJ International, 2011, 51, 250-255.	0.6	5