Karolien De Bosscher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/28733/publications.pdf

Version: 2024-02-01

91 papers

7,433 citations

42 h-index 83 g-index

93 all docs 93
docs citations

93 times ranked 9540 citing authors

#	Article	IF	Citations
1	Approaches towards tissueâ€selective pharmacology of the mineralocorticoid receptor. British Journal of Pharmacology, 2022, 179, 3235-3249.	2.7	14
2	Reprogramming of glucocorticoid receptor function by hypoxia. EMBO Reports, 2022, 23, e53083.	2.0	7
3	Point mutation I634A in the glucocorticoid receptor causes embryonic lethality by reduced ligand binding. Journal of Biological Chemistry, 2022, 298, 101574.	1.6	6
4	Hepatic glucocorticoidâ€induced transcriptional regulation is androgenâ€dependent after chronic but not acute glucocorticoid exposure. FASEB Journal, 2022, 36, e22251.	0.2	2
5	Carboxylic Acid Bioisosteres in Medicinal Chemistry: Synthesis and Properties. Journal of Chemistry, 2022, 2022, 1-21.	0.9	16
6	Novel assays monitoring direct glucocorticoid receptor protein activity exhibit high predictive power for ligand activity on endogenous gene targets. Biomedicine and Pharmacotherapy, 2022, 152, 113218.	2.5	7
7	ZBTB32 performs crosstalk with the glucocorticoid receptor and is crucial in glucocorticoid responses to starvation. IScience, 2021, 24, 102790.	1.9	1
8	How the glucocorticoid receptor contributes to platinum-based therapy resistance in solid cancer. Nature Communications, 2021, 12, 4959.	5.8	1
9	Combined glucocorticoid resistance and hyperlactatemia contributes to lethal shock in sepsis. Cell Metabolism, 2021, 33, 1763-1776.e5.	7.2	28
10	Improved Glucocorticoid Receptor Ligands: Fantastic Beasts, but How to Find Them?. Frontiers in Endocrinology, 2020, 11, 559673.	1.5	25
11	Latest perspectives on glucocorticoid-induced apoptosis and resistance in lymphoid malignancies. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188430.	3.3	22
12	Nuclear receptor crosstalk â€" defining the mechanisms for therapeutic innovation. Nature Reviews Endocrinology, 2020, 16, 363-377.	4.3	113
13	Glucocorticoids limit lipopolysaccharideâ€induced lethal inflammation by a double control system. EMBO Reports, 2020, 21, e49762.	2.0	8
14	Zinc inhibits lethal inflammatory shock by preventing microbeâ€induced interferon signature in intestinal epithelium. EMBO Molecular Medicine, 2020, 12, e11917.	3.3	14
15	Critical Roles of Endogenous Glucocorticoids for Disease Tolerance in Malaria. Trends in Parasitology, 2019, 35, 918-930.	1.5	8
16	Mechanisms Underlying the Functional Cooperation Between PPARα and GRα to Attenuate Inflammatory Responses. Frontiers in Immunology, 2019, 10, 1769.	2.2	12
17	Delayed development of the protective IL-17A response following a Giardia muris infection in neonatal mice. Scientific Reports, 2019, 9, 8959.	1.6	11
18	TNF- $\hat{l}\pm$ inhibits glucocorticoid receptor-induced gene expression by reshaping the GR nuclear cofactor profile. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12942-12951.	3.3	41

#	Article	IF	CITATIONS
19	Risks and benefits of corticosteroids in arthritic diseases in the clinic. Biochemical Pharmacology, 2019, 165, 112-125.	2.0	22
20	Co-Activation of Glucocorticoid Receptor and Peroxisome Proliferator–Activated Receptor-γ in Murine Skin Prevents Worsening of Atopic March. Journal of Investigative Dermatology, 2018, 138, 1360-1370.	0.3	16
21	Biallelic and monoallelic ESR2 variants associated with 46,XY disorders of sex development. Genetics in Medicine, 2018, 20, 717-727.	1.1	28
22	Glucocorticoids indirectly decrease colon cancer cell proliferation and invasion via effects on cancer-associated fibroblasts. Experimental Cell Research, 2018, 362, 332-342.	1.2	13
23	Therapeutic Mechanisms of Glucocorticoids. Trends in Endocrinology and Metabolism, 2018, 29, 42-54.	3.1	334
24	A screening assay for Selective Dimerizing Glucocorticoid Receptor Agonists and Modulators (SEDIGRAM) that are effective against acute inflammation. Scientific Reports, 2018, 8, 12894.	1.6	17
25	Adrenal hormones mediate disease tolerance in malaria. Nature Communications, 2018, 9, 4525.	5. 8	27
26	The autophagy receptor SQSTM1/p62 mediates anti-inflammatory actions of the selective NR3C1/glucocorticoid receptor modulator compound A (CpdA) in macrophages. Autophagy, 2018, 14, 2049-2064.	4.3	28
27	Effect of combining glucocorticoids with Compound A on glucocorticoid receptor responsiveness in lymphoid malignancies. PLoS ONE, 2018, 13, e0197000.	1.1	9
28	Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocrine Reviews, 2018, 39, 760-802.	8.9	420
29	Strategies and Compounds to Circumvent Glucocorticoid-Induced Side Effects., 2018,, 283-305.		2
30	Glucocorticoid receptor dimers control intestinal STAT1 and TNF-induced inflammation in mice. Journal of Clinical Investigation, 2018, 128, 3265-3279.	3.9	52
31	Daucane esters from laserwort (Laserpitium latifolium L.) inhibit cytokine and chemokine production in human lung epithelial cells. Phytomedicine, 2017, 26, 28-36.	2.3	1
32	Epicutaneous sensitization to house dust mite allergen requires interferon regulatory factor 4–dependent dermal dendritic cells. Journal of Allergy and Clinical Immunology, 2017, 140, 1364-1377.e2.	1.5	55
33	Semi-synthetic sapogenin exerts neuroprotective effects by skewing the brain ischemia reperfusion transcriptome towards inflammatory resolution. Brain, Behavior, and Immunity, 2017, 64, 103-115.	2.0	2
34	Involvement of the Glucocorticoid Receptor in Pro-inflammatory Transcription Factor Inhibition by Daucane Esters fromLaserpitium zernyi. Journal of Natural Products, 2017, 80, 1505-1513.	1.5	5
35	Compound A influences gene regulation of the Dexamethasone-activated glucocorticoid receptor by alternative cofactor recruitment. Scientific Reports, 2017, 7, 8063.	1.6	32
36	Interleukin-17 receptor A (IL-17RA) as a central regulator of the protective immune response against Giardia. Scientific Reports, 2017, 7, 8520.	1.6	23

#	Article	IF	Citations
37	Glucocorticoid Receptor-mediated transactivation is hampered by Striatin-3, a novel interaction partner of the receptor. Scientific Reports, 2017, 7, 8941.	1.6	9
38	TYK2-induced phosphorylation of Y640 suppresses STAT3 transcriptional activity. Scientific Reports, 2017, 7, 15919.	1.6	13
39	Interplay between barrier epithelial cells and dendritic cells in allergic sensitization through the lung and the skin. Immunological Reviews, 2017, 278, 131-144.	2.8	57
40	Colon cancer-derived myofibroblasts increase endothelial cell migration by glucocorticoid-sensitive secretion of a pro-migratory factor. Vascular Pharmacology, 2017, 89, 19-30.	1.0	18
41	Plasmodium berghei NK65 in Combination with IFN- \hat{l}^3 Induces Endothelial Glucocorticoid Resistance via Sustained Activation of p38 and JNK. Frontiers in Immunology, 2017, 8, 1199.	2.2	9
42	Selective Glucocorticoid Receptor Properties of GSK866 Analogs with Cysteine Reactive Warheads. Frontiers in Immunology, 2017, 8, 1324.	2.2	10
43	Glucocorticoid receptors: finding the middle ground. Journal of Clinical Investigation, 2017, 127, 1136-1145.	3.9	106
44	The nature of the GRE influences the screening for GR-activity enhancing modulators. PLoS ONE, 2017, 12, e0181101.	1.1	8
45	Coregulator profiling of the glucocorticoid receptor in lymphoid malignancies. Oncotarget, 2017, 8, 109675-109691.	0.8	13
46	Endothelial Response to Glucocorticoids in Inflammatory Diseases. Frontiers in Immunology, 2016, 7, 592.	2.2	76
47	The Interactome of the Glucocorticoid Receptor and Its Influence on the Actions of Glucocorticoids in Combatting Inflammatory and Infectious Diseases. Microbiology and Molecular Biology Reviews, 2016, 80, 495-522.	2.9	146
48	Chromatin recruitment of activated AMPK drives fasting response genes co-controlled by GR and PPARα. Nucleic Acids Research, 2016, 44, 10539-10553.	6.5	56
49	GR-independent down-modulation on GM-CSF bone marrow-derived dendritic cells by the selective glucocorticoid receptor modulator Compound A. Scientific Reports, 2016, 6, 36646.	1.6	7
50	Proteome-scale Binary Interactomics in Human Cells. Molecular and Cellular Proteomics, 2016, 15, 3624-3639.	2.5	23
51	Modulation of Protein–Protein Interactions for the Development of Novel Therapeutics. Molecular Therapy, 2016, 24, 707-718.	3.7	165
52	Activation of the Glucocorticoid Receptor in Acute Inflammation: the SEDIGRAM Concept. Trends in Pharmacological Sciences, 2016, 37, 4-16.	4.0	62
53	Differential Cytokine Profiles upon Comparing Selective versus Classic Glucocorticoid Receptor Modulation in Human Peripheral Blood Mononuclear Cells and Inferior Turbinate Tissue. PLoS ONE, 2015, 10, e0123068.	1.1	7
54	Selective glucocorticoid receptor modulation: New directions with non-steroidal scaffolds. , 2015, 152, 28-41.		172

#	Article	IF	CITATIONS
55	Synthesis of benzothiophene-based hydroxamic acids as potent and selective HDAC6 inhibitors. Chemical Communications, 2015, 51, 9868-9871.	2.2	28
56	Pharmacological Levels of Withaferin A (Withania somnifera) Trigger Clinically Relevant Anticancer Effects Specific to Triple Negative Breast Cancer Cells. PLoS ONE, 2014, 9, e87850.	1.1	70
57	How the Venom from the Ectoparasitoid Wasp Nasonia vitripennis Exhibits Anti-Inflammatory Properties on Mammalian Cell Lines. PLoS ONE, 2014, 9, e96825.	1.1	31
58	Hypoxia-inducible Lipid Droplet-associated (HILPDA) Is a Novel Peroxisome Proliferator-activated Receptor (PPAR) Target Involved in Hepatic Triglyceride Secretion. Journal of Biological Chemistry, 2014, 289, 19279-19293.	1.6	61
59	Selective modulation of the glucocorticoid receptor can distinguish between transrepression of NF-κB and AP-1. Cellular and Molecular Life Sciences, 2014, 71, 143-163.	2.4	67
60	<i>In Vitro</i> Inhibition of the Transcription Factor NFâ€PB and Cyclooxygenase by Bamboo Extracts. Phytotherapy Research, 2014, 28, 224-230.	2.8	66
61	Giardia muris Infection in Mice Is Associated with a Protective Interleukin 17A Response and Induction of Peroxisome Proliferator-Activated Receptor Alpha. Infection and Immunity, 2014, 82, 3333-3340.	1.0	56
62	The transrepressive activity of peroxisome proliferator-activated receptor alpha is necessary and sufficient to prevent liver fibrosis in mice. Hepatology, 2014, 60, 1593-1606.	3.6	116
63	Mitogen- and stress-activated protein kinase 1 MSK1 regulates glucocorticoid response element promoter activity in a glucocorticoid concentration-dependent manner. European Journal of Pharmacology, 2013, 715, 1-9.	1.7	6
64	How glucocorticoid receptors modulate the activity of other transcription factors: A scope beyond tethering. Molecular and Cellular Endocrinology, 2013, 380, 41-54.	1.6	341
65	Compound A, a Selective Glucocorticoid Receptor Modulator, Enhances Heat Shock Protein Hsp70 Gene Promoter Activation. PLoS ONE, 2013, 8, e69115.	1.1	25
66	Selective glucocorticoid receptor modulation maintains bone mineral density in mice. Journal of Bone and Mineral Research, 2012, 27, 2242-2250.	3.1	79
67	A Dissociated Glucocorticoid Receptor Modulator Reduces Airway Hyperresponsiveness and Inflammation in a Mouse Model of Asthma. Journal of Immunology, 2012, 188, 3478-3487.	0.4	81
68	Compound A, a Dissociated Glucocorticoid Receptor Modulator, Inhibits T-bet (Th1) and Induces GATA-3 (Th2) Activity in Immune Cells. PLoS ONE, 2012, 7, e35155.	1.1	32
69	MAPPIT: A protein interaction toolbox built on insights in cytokine receptor signaling. Cytokine and Growth Factor Reviews, 2011, 22, 321-329.	3.2	27
70	Dissociation of Osteogenic and Immunological Effects by the Selective Glucocorticoid Receptor Agonist, Compound A, in Human Bone Marrow Stromal Cells. Endocrinology, 2011, 152, 103-112.	1.4	48
71	An antiâ€inflammatory selective glucocorticoid receptor modulator preserves osteoblast differentiation. FASEB Journal, 2011, 25, 1323-1332.	0.2	69
72	Abrogation of Glucocorticoid Receptor Dimerization Correlates with Dissociated Glucocorticoid Behavior of Compound A. Journal of Biological Chemistry, 2010, 285, 8061-8075.	1.6	66

#	Article	IF	CITATIONS
73	Antiinflammatory Properties of a Plant-Derived Nonsteroidal, Dissociated Glucocorticoid Receptor Modulator in Experimental Autoimmune Encephalomyelitis. Molecular Endocrinology, 2010, 24, 310-322.	3.7	55
74	Selective Glucocorticoid Receptor modulators. Journal of Steroid Biochemistry and Molecular Biology, 2010, 120, 96-104.	1,2	112
75	Targeting inflammation using selective glucocorticoid receptor modulators. Current Opinion in Pharmacology, 2010, 10, 497-504.	1.7	115
76	Crosstalk between TNF and glucocorticoid receptor signaling pathways. Cytokine and Growth Factor Reviews, 2010, 21, 275-286.	3.2	64
77	Classic glucocorticoids versus non-steroidal glucocorticoid receptor modulators: Survival of the fittest regulator of the immune system?. Brain, Behavior, and Immunity, 2010, 24, 1035-1042.	2.0	58
78	Minireview: Latest Perspectives on Antiinflammatory Actions of Glucocorticoids. Molecular Endocrinology, 2009, 23, 281-291.	3.7	256
79	PPARα blocks glucocorticoid receptor α-mediated transactivation but cooperates with the activated glucocorticoid receptor α for transrepression on NF-κB. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7397-7402.	3.3	102
80	Crosstalk in Inflammation: The Interplay of Glucocorticoid Receptor-Based Mechanisms and Kinases and Phosphatases. Endocrine Reviews, 2009, 30, 830-882.	8.9	251
81	Glucocorticoids and mitogen- and stress-activated protein kinase 1 inhibitors: Possible partners in the combat against inflammation. Biochemical Pharmacology, 2009, 77, 1194-1205.	2.0	33
82	Differential mechanism of NFâ€PB inhibition by two glucocorticoid receptor modulators in rheumatoid arthritis synovial fibroblasts. Arthritis and Rheumatism, 2009, 60, 3241-3250.	6.7	61
83	Altered subcellular distribution of MSK1 induced by glucocorticoids contributes to NF-κB inhibition. EMBO Journal, 2008, 27, 1682-1693.	3.5	90
84	Selective transrepression versus transactivation mechanisms by glucocorticoid receptor modulators in stress and immune systems. European Journal of Pharmacology, 2008, 583, 290-302.	1.7	82
85	A Plant-Derived Ligand Favoring Monomeric Glucocorticoid Receptor Conformation with Impaired Transactivation Potential Attenuates Collagen-Induced Arthritis. Journal of Immunology, 2008, 180, 2608-2615.	0.4	125
86	A fully dissociated compound of plant origin for inflammatory gene repression. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15827-15832.	3.3	245
87	The Interplay between the Glucocorticoid Receptor and Nuclear Factor-κB or Activator Protein-1: Molecular Mechanisms for Gene Repression. Endocrine Reviews, 2003, 24, 488-522.	8.9	808
88	Glucocorticoid Repression of AP-1 Is Not Mediated by Competition for Nuclear Coactivators. Molecular Endocrinology, 2001, 15, 219-227.	3.7	80
89	Signal transduction by tumor necrosis factor and gene regulation of the inflammatory cytokine interleukin-6. Biochemical Pharmacology, 2000, 60, 1185-1195.	2.0	272
90	The Nuclear Factor-ÎB Engages CBP/p300 and Histone Acetyltransferase Activity for Transcriptional Activation of the Interleukin-6 Gene Promoter. Journal of Biological Chemistry, 1999, 274, 32091-32098.	1.6	327

#	ARTICLE	IF	CITATIONS
91	p38 and Extracellular Signal-regulated Kinase Mitogen-activated Protein Kinase Pathways Are Required for Nuclear Factor. PB p65 Transactivation Mediated by Tumor Necrosis Factor. Journal of Biological Chemistry, 1998, 273, 3285-3290.	1.6	643