Velumani S

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2873293/publications.pdf

Version: 2024-02-01

195 papers 4,118 citations

33 h-index 53 g-index

201 all docs

201 docs citations

201 times ranked

4941 citing authors

#	Article	IF	CITATIONS
1	Impact of selenization temperature on the performance of sequentially evaporated CulnSe2 thin film solar cells. Materials Science in Semiconductor Processing, 2022, 137, 106215.	4.0	8
2	Unraveling rapid one-pot synthesis of Cu(In,Ga)Se2 microcrystal light absorber with tunable morphology and its influence on the solar cell performance. Materials Letters, 2022, 306, 130928.	2.6	3
3	Synthesis and Characterization of Epoxy-Rich TMOs Deposited on Stainless Steel for Corrosion Applications. Coatings, 2022, 12, 387.	2.6	O
4	ZrO ₂ /ZnO/TiO ₂ Nanocomposite Coatings on Stainless Steel for Improved Corrosion Resistance, Biocompatibility, and Antimicrobial Activity. ACS Applied Materials & Compatibility, and Interfaces, 2022, 14, 13801-13811.	8.0	21
5	Chalcogenide BaZrS3 perovskite solar cells: A numerical simulation and analysis using SCAPS-1D. Optical Materials, 2022, 126, 112250.	3.6	30
6	Review on the effects due to alkali metals on copper–indium–gallium–selenide solar cells. Materials Today Energy, 2021, 20, 100617.	4.7	9
7	Unveiling the impact of Cu content on the physical properties and photovoltaic performance of solutionâ€processed Cu(In,Ga)Se ₂ solar cell absorber. International Journal of Energy Research, 2021, 45, 6966-6984.	4.5	5
8	Selective laser sintering of metallic oxide powder mixtures for bi/tri-metallic-oxide formation. Materials Letters, 2021, 286, 129215.	2.6	6
9	Structural and optical properties of CZTS nanoparticles prepared by a colloidal process. Rare Metals, 2021, 40, 2602-2609.	7.1	14
10	Photocatalysis using bismuth-based heterostructured nanomaterials for visible light harvesting. , 2021, , 289-328.		0
11	Introduction to photovoltaics and alternative materials for silicon in photovoltaic energy conversion., 2021,, 131-173.		2
12	Mechanical activation of TiO2/Fe2O3 nanocomposite for arsenic adsorption: effect of ball-to-powder ratio and milling time. Journal of Nanostructure in Chemistry, 2021, 11, 619-632.	9.1	16
13	interfacial layer with different HTL's in FAPI based perovskite solar cell – SCAPS – 1D study. Solar	14 rgB1 /O	overlock 10 Tf
14	Copper and Bismuth incorporated mixed cation perovskite solar cells by one-step solution process. Solar Energy, 2021, 218, 226-236.	6.1	21
15	Optimization of Cu(In, Ga)Se2 (CIGSe) thin film solar cells parameters through numerical simulation and experimental study. Solar Energy, 2021, 224, 298-308.	6.1	12
16	Impact of target power on the properties of sputtered intrinsic zinc oxide (i-ZnO) thin films and its thickness dependence performance on CISe solar cells. Optical Materials, 2021, 119, 111350.	3.6	14
17	Graphene oxide decorated TiO2 and BiVO4 nanocatalysts for enhanced visible-light-driven photocatalytic bacterial inactivation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113374.	3.9	13
18	Engineered Zr/Zn/Ti oxide nanocomposite coatings for multifunctionality. Applied Surface Science, 2021, 563, 150353.	6.1	11

#	Article	IF	CITATIONS
19	Efficient 2T CsKPb(IBr)3â€"Tin Incorporated Narrow Bandgap Perovskite Tandem Solar Cells: A Numerical Study with Current Matching Conditions. Advanced Theory and Simulations, 2021, 4, 2100121.	2.8	5
20	Structural features and morphology of titanium dioxide–bismuth vanadate heterojunctions. CrystEngComm, 2021, 23, 7679-7690.	2.6	1
21	Numerical Optimization of Materials Properties for High-Efficiency CISe Thin Film Solar Cells Using SCAPS-1D Simulator., 2021,,.		4
22	Numerical Study of the Recombination Profiles in CIGSe Thin Film Solar Cells Through Silvaco Atlas Simulator after using Experimental Parameters. , 2021, , .		3
23	Occurrence, distribution and provenance of micro plastics: A large scale quantitative analysis of beach sediments from southeastern coast of South Africa. Science of the Total Environment, 2020, 746, 141103.	8.0	30
24	Electronic and optical competence of TiO2/BiVO4 nanocomposites in the photocatalytic processes. Scientific Reports, 2020, 10, 13507.	3.3	30
25	Recent trends in Advanced Functional Semiconducting Materials (selected papers from the IMRC2019,) Tj ETQq1 Journal of Materials Science: Materials in Electronics, 2020, 31, 7285-7285.	1 0.78431 2.2	.4 rgBT /Ov O
26	Experimental and SCAPS simulated formamidinium perovskite solar cells: A comparison of device performance. Solar Energy, 2020, 205, 349-357.	6.1	177
27	Manganese ferrite nanocubes as an MRI contrast agent. Materials Research Express, 2020, 7, 016107.	1.6	25
28	Comparative studies of CdS thin films by chemical bath deposition techniques as a buffer layer for solar cell applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 7499-7518.	2.2	79
29	Comparative study of optimised molybdenum back-contact deposition with different barriers (Ti, ZnO) on stainless steel substrate for flexible solar cell application. Journal of Materials Science: Materials in Electronics, 2020, 31, 7524-7538.	2.2	9
30	Statistical experimental design to optimize RF-sputtered NiTiO3 thin films. Journal of Materials Science: Materials in Electronics, 2020, 31, 7434-7444.	2.2	2
31	Perspectives of chalcopyrite-based CIGSe thin-film solar cell: a review. Journal of Materials Science: Materials in Electronics, 2020, 31, 7286-7314.	2.2	55
32	Properties Of Ultra-Thin Radio-frequency Sputtered Aluminum Doped Zinc Oxide Thin Films For Solar Cell Applications. , 2020, , .		1
33	Stability threshold of formamidinium lead iodide determined by strain amplitudes. Journal Physics D: Applied Physics, 2020, 53, 504003.	2.8	1
34	Growth of In \langle sub \rangle 2 \langle sub \rangle Se \langle sub \rangle 3 \langle sub \rangle Thin Films Prepared by the Pneumatic Spray Pyrolysis Method for Thin Film Solar Cells Applications. , 2020, , .		2
35	Large Area (10 x10 cm $<$ sup $>$ 2 $<$ /sup $>$) Production of CdS Buffer Layer for Solar Cells by Chemical Bath Method. , 2020, , .		3
36	Characterization of BiVO4 Modified TiO2 and its Application in the Water Treatment. , 2020, , .		0

#	Article	IF	Citations
37	Effects of changes on temperature and fluorine concentration in the structural, optical and electrical properties of SnO2:F thin films. Journal of Materials Science: Materials in Electronics, 2019, 30, 15563-15581.	2.2	4
38	Time-dependent evolution pathway of CIGSe nanocrystals by low-temperature process. Advanced Powder Technology, 2019, 30, 2980-2988.	4.1	9
39	Cu ₂ ZnSn(S,Se) ₄ thin-films prepared from selenized nanocrystals ink. RSC Advances, 2019, 9, 18420-18428.	3.6	13
40	Solution based synthesis of Cu(In,Ga)Se ₂ microcrystals and thin films. RSC Advances, 2019, 9, 35197-35208.	3.6	13
41	Gold-Iron oxide yolk-shell nanoparticles (YSNPs) as magnetic probe for fluorescence-based detection of 3 base mismatch DNA. Colloids and Surfaces B: Biointerfaces, 2019, 176, 431-438.	5.0	6
42	Telescoping synthesis and goldilocks of CZTS nanocrystals. Materials Research Bulletin, 2019, 111, 342-349.	5.2	8
43	Electrical, optical, and topographical properties of RF magnetron sputtered aluminum-doped zinc oxide (AZO) thin films complemented by first-principles calculations. Journal of Materials Science: Materials in Electronics, 2018, 29, 15383-15395.	2.2	4
44	Photocatalytic degradation of Orange G using TiO2/Fe3O4 nanocomposites. Journal of Materials Science: Materials in Electronics, 2018, 29, 15436-15444.	2.2	27
45	Electronic structure and optical properties of SnO2:F from PBE0 hybrid functional calculations. Journal of Materials Science: Materials in Electronics, 2018, 29, 15423-15435.	2.2	9
46	Structural and morphological data of RF-Sputtered BiVO4 thin films. Data in Brief, 2018, 17, 526-528.	1.0	1
47	Deposition and characterization of ultrathin intrinsic zinc oxide (i-ZnO) films by radio frequency (RF) sputtering for propane gas sensing application. Journal of Materials Science: Materials in Electronics, 2018, 29, 15682-15692.	2.2	24
48	Hot injection synthesis of Cu(In, Ga)Se2 nanocrystals with tunable bandgap. Optical Materials, 2018, 79, 450-456.	3.6	28
49	Electrical, structural, and topographical properties of direct current (DC) sputtered bilayer molybdenum thin films. Journal of Materials Science: Materials in Electronics, 2018, 29, 15671-15681.	2.2	8
50	Selenization of CIS and CIGS layers deposited by chemical spray pyrolysis. Journal of Materials Science: Materials in Electronics, 2018, 29, 15369-15375.	2.2	4
51	Nanostructured bismuth vanadate (BiVO4) thin films for efficient visible light photocatalysis. Materials Chemistry and Physics, 2018, 205, 325-333.	4.0	50
52	Biofunctionalized MnFe ₂ O ₄ @Au core–shell nanoparticles for pH-responsive drug delivery and hyperthermal agent for cancer therapy. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 993-1003.	2.8	16
53	Characterizations of a Selenized Cu(In <inf>1-x</inf> Ca <inf>x</inf>)Se <inf>2</inf> Thin Film Absorber Layer Fabricated By a Three-Stage Hybrid Method. , 2018, , .		2
54	Structural, Morphological, Topographical, and Electrical Properties of Selenized Stacked CIGSe Layers by Evaporation Technique. , 2018, , .		3

#	Article	IF	CITATIONS
55	12 Possible Orientations of organic Formamidinium cation and its structural analysis by First Principles calculations using Van der Waals-Density functional Theory. , 2018, , .		1
56	Structure, magnetic and cytotoxic behaviour of solvothermally grown Fe3O4@Au core-shell nanoparticles. Materials Characterization, 2018, 142, 237-244.	4.4	28
57	Cu, Mo-doped and pristine-BiVO4 thin films prepared by rf sputtering process for photocatalytic applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 15770-15775.	2,2	4
58	Water-dispersible magnetite nanoparticles as T 2 MR imaging contrast agent. Biomedical Physics and Engineering Express, 2017, 3, 015011.	1.2	11
59	Influence of defect luminescence and structural modification on the electrical properties of Magnesium Doped Zinc Oxide Nanorods. Superlattices and Microstructures, 2017, 106, 58-66.	3.1	8
60	Synthesis and Characterization of Polyol-Assisted Nano Cu0.2Ni0.2Sn0.2Ba0.4 Fe2O4 by a Wet Hydroxyl Route. Journal of Electronic Materials, 2017, 46, 4835-4841.	2.2	1
61	Design and evaluation of surface functionalized superparamagneto-plasmonic nanoparticles for cancer therapeutics. International Journal of Pharmaceutics, 2017, 524, 16-29.	5. 2	8
62	Preparation and characterization of Cu ₂ ZnSnSe ₄ and Cu ₂ ZnSn(S,Se) ₄ powders by ball milling process for solar cells application. Materials Research Express, 2017, 4, 125501.	1.6	11
63	Inorganic nanoflotillas as engineered particles for drug and gene delivery. , 2016, , 429-483.		5
64	Facile one pot synthesis of single phase kesterite Cu2ZnSnS4 nanocrystals. , 2016, , .		0
65	Influence of reaction time on Cu(In,Ga)Se2 particles synthesis by thermal decomposition method. , 2016, , .		0
66	Cytotoxicity of semiconductor nanoparticles in A549 cells is attributable to their intrinsic oxidant activity. Journal of Nanoparticle Research, $2016, 18, 1$.	1.9	6
67	Microplastics in tourist beaches of Huatulco Bay, Pacific coast of southern Mexico. Marine Pollution Bulletin, 2016, 113, 530-535.	5.0	113
68	High Energy Ball-Milling Synthesis of Nanostructured Ag-Doped and BiVO ₄ -Based Photocatalysts. ChemistrySelect, 2016, 1, 1278-1286.	1.5	20
69	Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging. Scientific Reports, 2016, 6, 21286.	3.3	56
70	Plasmonic/Magnetic Multifunctional nanoplatform for Cancer Theranostics. Scientific Reports, 2016, 6, 34874.	3.3	41
71	Structure-dependent anisotropy of the photoinduced optical nonlinearity in calcium doped ZnO nanorods grown by low cost hydrothermal method for photonic device applications. Journal of Alloys and Compounds, 2016, 658, 435-439.	5 . 5	30
72	Light scattering effect of ITO:Zr/AZO films deposited on periodic textured glass surface morphologies for silicon thin film solar cells. Applied Physics A: Materials Science and Processing, 2015, 120, 823-828.	2.3	9

#	Article	IF	Citations
73	Influence of working pressure on the structural, optical and electrical properties of sputter deposited AZO thin films. Materials Science in Semiconductor Processing, 2015, 37, 29-36.	4.0	22
74	Deposition and characterization of graded Cu(In1-xGax)Se2 thin filmsÂby spray pyrolysis. Materials Chemistry and Physics, 2015, 162, 59-68.	4.0	22
75	Parametric optimization of mechanochemical process for synthesis of Cu(In, Ga)0.5Se2 nanoparticles. Materials Science in Semiconductor Processing, 2015, 37, 151-158.	4.0	22
76	Structural, morphological and optical properties of sol-gel prepared Cu doped BiVO4 powders. , 2015, , .		5
77	Synthesis and Characterization of Bimetallic Ni ₅₀ Pt ₅₀ Catalyst Supported on SiO ₂ for N ₂ O Decomposition. Journal of Nanoscience and Nanotechnology, 2015, 15, 9473-9481.	0.9	1
78	Synthesis and Characterization of Cadmium Sulfide Nanoparticles by Chemical Precipitation Method. Journal of Nanoscience and Nanotechnology, 2015, 15, 8434-8439.	0.9	65
79	Effects of interface trap density on the electrical performance of amorphous InSnZnO thin-film transistor. Journal of Semiconductors, 2015, 36, 024007.	3.7	12
80	Structural, electronic and optical features of molybdenum-doped bismuth vanadium oxide. Materials Science in Semiconductor Processing, 2015, 31, 618-623.	4.0	48
81	Cobalt ferrite nanowhiskers as T ₂ MRI contrast agent. RSC Advances, 2015, 5, 17223-17227.	3.6	22
82	Light trapping by hydrothermally deposited zinc oxide nanostructures with high haze ratio. Materials Science in Semiconductor Processing, 2015, 37, 51-56.	4.0	9
83	Structural properties of In2Se3 precursor layers deposited by spray pyrolysis and physical vapor deposition for CulnSe2 thin-film solar cell applications. Thin Solid Films, 2015, 587, 112-116.	1.8	19
84	Structural Properties of Ultrasonically Sprayed Al-Doped ZnO (AZO) Thin Films: Effect of ZnO Buffer Layer on AZO. Journal of Electronic Materials, 2015, 44, 699-705.	2.2	13
85	Uniform 3D hydrothermally deposited zinc oxide nanorods with high haze ratio. Materials Science in Semiconductor Processing, 2015, 37, 99-104.	4.0	14
86	Boosting the mobility and bias stability of oxide-based thin-film transistors with ultra-thin nanocrystalline InSnO:Zr layer. Applied Physics Letters, 2015, 106, 033501.	3.3	9
87	Effect of sodium doping on graded Cu($\ln 1\hat{a}^{*}$ xGax)Se2 thin films prepared by chemical spray pyrolysis. Materials Science in Semiconductor Processing, 2015, 37, 37-45.	4.0	13
88	Electrochemical growth and characterization of iron doped cadmium sulfide thin films. Materials Science in Semiconductor Processing, 2015, 37, 215-222.	4.0	17
89	SF6/Ar plasma textured periodic glass surface morphologies with high transmittance and haze ratio of ITO:Zr films for amorphous silicon thin film solar cells. Vacuum, 2015, 117, 91-97.	3.5	14
90	Aging effects on the stability of nitrogen-doped and un-doped InGaZnO thin-film transistors. Materials Science in Semiconductor Processing, 2015, 37, 129-134.	4.0	30

#	Article	IF	Citations
91	Role of Schottky barrier height at source/drain contact for electrical improvement in high carrier concentration amorphous InGaZnO thin film transistors. Materials Science in Semiconductor Processing, 2015, 38, 50-56.	4.0	15
92	Improvement of data retention characteristics of OSOSO multi-stacked MIS capacitor for flat panel display technology. Materials Science in Semiconductor Processing, 2015, 37, 9-13.	4.0	0
93	Structural and optical characterization of ball-milled copper-doped bismuth vanadium oxide (BiVO ₄). CrystEngComm, 2015, 17, 3366-3375.	2.6	101
94	Synthesis of ZnO nanorods using different precursor solutions and their two terminal device characterization. Journal of Materials Science: Materials in Electronics, 2015, 26, 5724-5734.	2.2	10
95	Low Wavenumber Raman Modes and Plasmon Resonance in Cd Nanoparticles Obtained in Extract of <i>Opuntia Ficus-Indica</i> Plant. Nano, 2015, 10, 1550100.	1.0	1
96	Synthesis of Culn <i>_{1-x}</i> Ga <i>_x</i> Se ₂ Nanoparticles by Thermal Decomposition Method with Tunable Ga Content. Journal of Nanoscience and Nanotechnology, 2015, 15, 8388-8394.	0.9	11
97	Effect of nitrate concentration on the electrochemical growth and properties of ZnO nanostructures. Journal of Materials Science: Materials in Electronics, 2015, 26, 1217-1224.	2.2	26
98	Solution-based synthesis of high yield CZTS (Cu 2 ZnSnS 4) spherical quantum dots. Superlattices and Microstructures, 2015, 77, 305-312.	3.1	26
99	Synthesis and optical properties of BaTiO3:Eu3+@SiO2 glass ceramic nano particles. Journal of Sol-Gel Science and Technology, 2014, 72, 435-442.	2.4	8
100	PLASMON RESONANCE AND RAMAN MODES IN Pb NANOPARTICLES OBTAINED IN EXTRACT OF <i>OPUNTIA FICUS-INDICA</i>	1.0	10
101	Structural and optical properties of molybdenum doped bismuth vanadate powders. , 2014, , .		5
102	Effect of milling time on mechanically alloyed Cu(In, Ga)Se <inf>2</inf> nanoparticles. , 2014, , .		0
103	Mathematical Modeling and Optimization of Mechanical Properties of Short Coir Fiber-Reinforced Vinyl Ester Composite Using Genetic Algorithm Method. Mechanics of Advanced Materials and Structures, 2014, 21, 559-565.	2.6	15
104	Highly transparent RF magnetron-sputtered indium tin oxide films for a-Si:H/c-Si heterojunction solar cells amorphous/crystalline silicon. Materials Science in Semiconductor Processing, 2014, 24, 225-230.	4.0	15
105	Effect of Al concentrations on the electrodeposition and properties of transparent Al-doped ZnO thin films. Journal of Materials Science: Materials in Electronics, 2014, 25, 1761-1769.	2.2	38
106	Lu2O3:Eu3+ glass ceramic films: Synthesis, structural and spectroscopic studies. Materials Research Bulletin, 2014, 51, 418-425.	5.2	12
107	Structural studies of BaTiO3:Er3+ and BaTiO3:Yb3+ powders synthesized by hydrothermal method. Journal of Rare Earths, 2014, 32, 1016-1021.	4.8	16
108	One-dimensional ordered growth of magneto-crystalline and biocompatible cobalt ferrite nano-needles. Materials Letters, 2014, 135, 67-70.	2.6	9

7

#	Article	IF	CITATIONS
109	Atomic Structure Characterization of Au–Pd Bimetallic Nanoparticles by Aberration-Corrected Scanning Transmission Electron Microscopy. Journal of Physical Chemistry C, 2014, 118, 22383-22388.	3.1	12
110	Scanning fluorescence-based ultrasensitive detection of dengue viral DNA on ZnO thin films. Sensors and Actuators B: Chemical, 2014, 202, 1338-1348.	7.8	35
111	Study of Low Resistivity and High Work Function ITO Films Prepared by Oxygen Flow Rates and N&ItSUB>2&It/SUB>O Plasma Treatment for Amorphous/Crystalline Silicon Heterojunction Solar Cells. Journal of Nanoscience and Nanotechnology, 2014, 14, 9237-9241.	0.9	11
112	Oxidation of $\ln <\inf >2 Se <\inf >3 $ precursor films and its effects on preparation of CuInSe <\inf >2 based thin film solar cells., 2014,,.		0
113	Mechanical and machinability behaviors of woven coir fiber-reinforced polyester composite. Fibers and Polymers, 2013, 14, 1505-1514.	2.1	40
114	Dielectric behavior, conduction and EPR active centres in BiVO4 nanoparticles. Journal of Physics and Chemistry of Solids, 2013, 74, 1695-1702.	4.0	25
115	Optimization of mechanical properties of non-woven short sisal fibre-reinforced vinyl ester composite using factorial design and GA method. Bulletin of Materials Science, 2013, 36, 575-583.	1.7	13
116	Regression modelling and optimisation of cutting parameters through Nelder-Mead simplex search and CCFD during drilling of sisal-glass/vinyl ester composites. International Journal of Machining and Machinability of Materials, 2013 , 14 , 1 .	0.1	12
117	Morphology control and optical properties of ZnO nanostructures grown by ultrasonic synthesis. Advances in Nano Research, 2013, 1, 59-70.	0.9	13
118	Effect of the Milling Time of the Precursors on the Physical Properties of Sprayed Aluminum-Doped Zinc Oxide (ZnO:Al) Thin Films. Materials, 2012, 5, 1404-1412.	2.9	8
119	Group III-nitrides nanostructures. , 2012, , .		0
120	Structural and optical characterization of mechanochemically synthesized copper doped CdS nanopowders. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 1452-1459.	3.5	28
121	Mechanochemical synthesis of nanostructured BiVO4 and investigations of related features. Materials Chemistry and Physics, 2012, 135, 842-848.	4.0	53
122	Preparation, deposition of $Cu(\ln kt; 1 + kt) = 0$ and $t = 0$ and $t = 0$ are the properties of $t = 0$ and $t = $		0
123	An (ITO or AZO)/ZnO/Cu(In <inf>1−x</inf> Ga <inf>x</inf>)Se <inf>2</inf> superstrate thin film solar cell structure prepared by spray pyrolysis. , 2011, , .		5
124	Structural and dielectrical studies on mechano-chemically synthesized indium doped CdS nanopowders. Journal of Materials Science, 2011, 46, 5417-5422.	3.7	1
125	Effect of milling time and heat treatment on the composition of Culn0.75Ga0.25Se2 nanoparticle precursors and films. Journal of Nanoparticle Research, 2011, 13, 3033-3042.	1.9	17
126	CO adsorption in PdxCoyXz (X = Au, Mo, Ni) tertiary alloy nanocatalysts for PEM fuel cells-a theoretical analysis. International Journal of Energy Research, $2011, 35, 594-600$.	4.5	3

#	Article	IF	CITATIONS
127	Size modulation of nanocrystalline silicon embedded in amorphous silicon oxide by Cat-CVD. Thin Solid Films, 2011, 519, 4498-4501.	1.8	17
128	An investigation on silar $Cu(In1\hat{a}^{2}xAlx)Se2$ thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 209-215.	3.5	26
129	Experimental and theoretical investigations of structural and optical properties of CIGS thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 205-208.	3.5	29
130	Electrosynthesis and studies on Cadmium-Indium-Selenide thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 236-241.	3.5	15
131	Proposal of a hybrid CHP system: SOFC/microturbine/absorption chiller. International Journal of Energy Research, 2010, 34, 1088-1095.	4.5	35
132	AC and dielectric properties of vacuum evaporated InTe bilayer thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 269-272.	3.5	42
133	Fluorine doped zinc oxide thin films deposited by chemical spray, starting from zinc pentanedionate and hydrofluoric acid: Effect of the aging time of the solution. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 46-49.	3.5	38
134	Structural studies of mechano-chemically synthesized Culn1â^'xGaxSe2 nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 216-221.	3.5	30
135	Electrodeposition and characterization of Fe doped CdSe thin films from aqueous solution. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 242-248.	3.5	48
136	Electrical and optical properties of ultrasonically sprayed Al-doped zinc oxide thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 31-37.	3.5	53
137	Preparation and characterization of MnSe thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 257-262.	3.5	20
138	Band structure calculations of Cu(In1â^'xGax)Se2. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 200-204.	3.5	15
139	Electrosynthesis and studies on Cadmium-Iron-Sulphide thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 231-235.	3.5	9
140	Electrochemical deposition and studies on CdCr2S4 thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 249-252.	3.5	12
141	Symposium on advances in semiconducting materials. Vacuum, 2010, 84, 1181.	3.5	0
142	Characterization on pulsed laser deposited nanocrystalline ZnO thin films. Vacuum, 2010, 84, 1199-1203.	3.5	10
143	Characterization of Zinc-phthalocyanine–CdS composite thin films for photovoltaic applications. Vacuum, 2010, 84, 1212-1215.	3.5	11
144	Fabrication and characterization of n-CdSe0.7Te0.3/p-CdSe0.15Te0.85 solar cell. Vacuum, 2010, 84, 1216-1219.	3.5	14

#	Article	lF	CITATIONS
145	Structure and temperature dependence of conduction mechanisms in hot wall deposited CulnSe2 thin films and effect of back contact layer in CulnSe2 based solar cells. Vacuum, 2010, 84, 1220-1225.	3.5	22
146	Structural, photoluminescence and electrical properties of MW-CBD CdZnS thin films. , 2010, , .		1
147	Synthesis and Characterization of NiCr Self-Assembled Nanorings. Journal of Nano Research, 2010, 9, 101-108.	0.8	2
148	Properties of CulnGaSe thin films prepared by chemical spray pyrolysis., 2010,,.		3
149	Effect of pH on Composition, Structure and Magnetic Properties of Electrodeposited Co-Ni Alloys. Advanced Materials Research, 2009, 68, 52-59.	0.3	8
150	Mechano-chemical Synthesis, Deposition and Structural Characterization of CIGS. Materials Research Society Symposia Proceedings, 2009, 1210, 1.	0.1	1
151	Effect of thickness on the structural, optical and electrical properties of MW-CBD CdZnS thin films., 2009,,.		3
152	Deposition of nanocrystalline-silicon by Cat-CVD method and its characterization. , 2009, , .		0
153	Deposition and characterization of ZnO:Al thin films by ultrasonic spray pyrolysis. , 2009, , .		3
154	Properties of Mechanochemically Synthesized ZnS Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 6600-6605.	0.9	28
155	Band structure and Optical properties CdTe and CdSn[sub 3]Te[sub 4] thin films. AIP Conference Proceedings, 2008, , .	0.4	1
156	Structural and optical characterization of CuInSe2 films deposited by hot wall vacuum evaporation method. Vacuum, 2007, 81, 813-818.	3.5	38
157	TiO2 thin film gas sensor for monitoring ammonia. Materials Characterization, 2007, 58, 680-684.	4.4	345
158	Electrical conduction in zinc phosphide thin films. Materials Characterization, 2007, 58, 730-734.	4.4	8
159	Influence of annealing on structural and optical properties of Zn3P2 thin films. Materials Characterization, 2007, 58, 745-749.	4.4	41
160	Characterization of vacuum-evaporated ZnSe thin films. Materials Characterization, 2007, 58, 794-799.	4.4	42
161	Electrosynthesis and characterization of lead oxide thin films. Materials Characterization, 2007, 58, 817-822.	4.4	32
162	Electrodeposition and characterization of HgSe thin films. Materials Characterization, 2007, 58, 735-739.	4.4	6

#	Article	IF	CITATIONS
163	Electrochemical deposition and characterization of Ni–P alloy thin films. Materials Characterization, 2007, 58, 800-804.	4.4	36
164	Structural and photoelectrical characterization of hot wall deposited CuInSe2 thin films and the fabrication of CuInSe2 based solar cells. Materials Characterization, 2007, 58, 701-707.	4.4	9
165	Space charge limited current conduction in Bi2Te3 thin films. Materials Characterization, 2007, 58, 842-846.	4.4	3
166	Spectroscopic ellipsometry (SE) studies on vacuum-evaporated ZnSe thin films. Materials Characterization, 2007, 58, 715-720.	4.4	4
167	Characterization of Bismuth Telluride thin films — Flash evaporation method. Materials Characterization, 2007, 58, 782-785.	4.4	33
168	XIV International Materials Research Congress: Symposium 7, Materials Characterization â€" Cancun, August 2005. Materials Characterization, 2007, 58, 671.	4.4	0
169	Structural studies on vacuum evaporated ZnSe/p-Si Schottky diodes. Materials Chemistry and Physics, 2007, 103, 305-311.	4.0	29
170	Effect of rapid thermal annealing on the properties of PECVD SiNx thin films. Materials Chemistry and Physics, 2007, 106, 130-133.	4.0	31
171	Photoluminescence and persistent photoconductivity of AlxGa1-xN/GaN heterostructures. Applied Physics A: Materials Science and Processing, 2007, 86, 521-524.	2.3	5
172	Electrochemical synthesis and characterization of zinc selenide thin films. Journal of Materials Science, 2006, 41, 3553-3559.	3.7	18
173	Dielectric properties of vacuum deposited Bi2Te3 thin films. Solar Energy Materials and Solar Cells, 2005, 88, 187-198.	6.2	13
174	Structural, optical and Raman scattering studies on DC magnetron sputtered titanium dioxide thin films. Solar Energy Materials and Solar Cells, 2005, 88, 199-208.	6.2	80
175	Structural and annealing studies of potentiostatically deposited Cu2O thin films. Solar Energy Materials and Solar Cells, 2005, 88, 209-216.	6.2	53
176	Structural and electrochemical characterization of sputter-deposited nitrided NiCr alloys. Journal of Solid State Electrochemistry, 2005, 9, 535-546.	2.5	6
177	Experimental and theoretical analysis of electropolymerized PMeT thin films. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3058-3068.	2.1	1
178	Characterization of electrodeposited Zn1â°'xHgxSe thin films. Semiconductor Science and Technology, 2005, 20, 749-754.	2.0	10
179	Formation of ZnS nanorods by simple evaporation technique. Applied Physics A: Materials Science and Processing, 2004, 79, 153-156.	2.3	33
180	Structural analysis of cobalt titanate nanoparticles obtained by sol?gel process. Applied Physics A: Materials Science and Processing, 2004, 78, 531-536.	2.3	19

#	Article	IF	CITATIONS
181	Influence of surface phenomena in oxidative desulfurization with WOx/ZrO2 catalysts. Applied Physics A: Materials Science and Processing, 2004, 79, 2037-2040.	2.3	40
182	Theoretical and Experimental analysis of ZnPc for its local ordering and electronic structure. Applied Physics A: Materials Science and Processing, 2004, 79, 1913-1918.	2.3	11
183	Electrical resistivity of thermally evaporated bismuth telluride thin films. Solar Energy Materials and Solar Cells, 2004, 81, 305-312.	6.2	33
184	Dielectric and conduction studies on hot-wall deposited CdSe films. Solar Energy Materials and Solar Cells, 2004, 81, 323-338.	6.2	8
185	Thickness dependent properties of hot wall deposited CdSe films. Journal of Materials Science Letters, 2003, 22, 25-28.	0.5	8
186	Characterization of zinc phthalocyanine (ZnPc) for photovoltaic applications. Applied Physics A: Materials Science and Processing, 2003, 77, 383-389.	2.3	82
187	Development of CdTe thin films on flexible substrates—a review. Solar Energy Materials and Solar Cells, 2003, 76, 293-303.	6.2	86
188	Structural and optical properties of hot wall deposited CdSe thin films. Solar Energy Materials and Solar Cells, 2003, 76, 347-358.	6.2	124
189	Structural and optical characterization of hot wall deposited CdSexTe1â^'x films. Solar Energy Materials and Solar Cells, 2003, 76, 359-368.	6.2	73
190	Structural characterization of hot wall deposited cadmium selenide thin films. Semiconductor Science and Technology, 1998, 13, 1016-1024.	2.0	51
191	Laser damage studies on hot-wall-deposited cadmium selenide films. Journal of Materials Science Letters, 1997, 16, 1974-1976.	0.5	2
192	Preparation and Microstructural Studies of Electrodeposited FeSe Thin Films. Advanced Materials Research, 0, 68, 60-68.	0.3	1
193	Structural and Optical Studies of Hot Wall Vacuum Evaporated CdTeSn Thin Films. Advanced Materials Research, 0, 68, 77-83.	0.3	3
194	Electrochemical Deposition and Characterization of Cd-Fe-Se Thin Films. Advanced Materials Research, 0, 68, 69-76.	0.3	7
195	Microstructural Characterization of Electro-Deposited CdSe Thin Films. Advanced Materials Research, 0, 68, 44-51.	0.3	3