Jerome Thiery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2873072/publications.pdf

Version: 2024-02-01

304743 377865 1,983 36 22 34 h-index citations g-index papers 39 39 39 3714 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Alteration of the Antitumor Immune Response by Cancer-Associated Fibroblasts. Frontiers in Immunology, 2018, 9, 414.	4.8	272
2	Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells. Nature Immunology, 2011, 12, 770-777.	14.5	251
3	Capture of MicroRNA–Bound mRNAs Identifies the Tumor Suppressor miR-34a as a Regulator of Growth Factor Signaling. PLoS Genetics, 2011, 7, e1002363.	3 . 5	222
4	Cytotoxic Cells Kill Intracellular Bacteria through Granulysin-Mediated Delivery of Granzymes. Cell, 2014, 157, 1309-1323.	28.9	164
5	Perforin activates clathrin- and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis. Blood, 2010, 115, 1582-1593.	1.4	113
6	Critical Role of Tumor Microenvironment in Shaping NK Cell Functions: Implication of Hypoxic Stress. Frontiers in Immunology, 2015, 6, 482.	4.8	103
7	ITPR1 Protects Renal Cancer Cells against Natural Killer Cells by Inducing Autophagy. Cancer Research, 2014, 74, 6820-6832.	0.9	97
8	Melanoma-associated fibroblasts decrease tumor cell susceptibility to NK cell-mediated killing through matrix-metalloproteinases secretion. Oncotarget, 2017, 8, 19780-19794.	1.8	92
9	Role of Hypoxic Stress in Regulating Tumor Immunogenicity, Resistance and Plasticity. International Journal of Molecular Sciences, 2018, 19, 3044.	4.1	64
10	Arf-like GTPase Arl8b regulates lytic granule polarization and natural killer cell–mediated cytotoxicity. Molecular Biology of the Cell, 2013, 24, 3721-3735.	2.1	62
11	Perforin: A Key Pore-Forming Protein for Immune Control of Viruses and Cancer. Sub-Cellular Biochemistry, 2014, 80, 197-220.	2.4	47
12	A three-dimensional tumor cell defect in activating autologous CTLs is associated with inefficient antigen presentation correlated with heat shock protein-70 down-regulation. Cancer Research, 2003, 63, 3682-7.	0.9	42
13	Role of Hypoxia-Mediated Autophagy in Tumor Cell Death and Survival. Cancers, 2021, 13, 533.	3.7	41
14	Hypoxia increases melanoma-associated fibroblasts immunosuppressive potential and inhibitory effect on T cell-mediated cytotoxicity. Oncolmmunology, 2021, 10, 1950953.	4.6	39
15	The pharmalogical reactivation of p53 function improves breast tumor cell lysis by granzyme B and NK cells through induction of autophagy. Cell Death and Disease, 2019, 10, 695.	6.3	38
16	Granzyme B–Activated p53 Interacts with Bcl-2 To Promote Cytotoxic Lymphocyte–Mediated Apoptosis. Journal of Immunology, 2015, 194, 418-428.	0.8	37
17	Analysis of the mechanisms of human cytotoxic T lymphocyte response inhibition by NO. International Immunology, 2002, 14, 1169-1178.	4.0	36
18	Opposite effects of estrogen receptors alpha and beta on MCF-7 sensitivity to the cytotoxic action of TNF and p53 activity. Oncogene, 2005, 24, 4789-4798.	5.9	32

#	Article	IF	CITATIONS
19	Isolation of Cytotoxic T Cell and NK Granules and Purification of Their Effector Proteins. Current Protocols in Cell Biology, 2010, 47, Unit3.37.	2.3	32
20	The Effect of Hypoxia and Hypoxia-Associated Pathways in the Regulation of Antitumor Response: Friends or Foes?. Frontiers in Immunology, 2022, 13, 828875.	4.8	31
21	Granzyme B-induced Cell Death Involves Induction of p53 Tumor Suppressor Gene and Its Activation in Tumor Target Cells. Journal of Biological Chemistry, 2007, 282, 32991-32999.	3.4	27
22	Potentiation of a Tumor Cell Susceptibility to Autologous CTL Killing by Restoration of Wild-Type p53 Function. Journal of Immunology, 2003, 170, 5919-5926.	0.8	26
23	p53 Potentiation of Tumor Cell Susceptibility to CTL Involves Fas and Mitochondrial Pathways. Journal of Immunology, 2005, 174, 871-878.	0.8	25
24	Hypoxia increases mutational load of breast cancer cells through frameshift mutations. Oncolmmunology, 2020, 9, 1750750.	4.6	20
25	Tumor resistance to specific lysis: A major hurdle for successful immunotherapy of cancer. Clinical Immunology, 2009, 130, 34-40.	3.2	13
26	Chapter Eleven Granzymes and Cell Death. Methods in Enzymology, 2008, 442, 213-230.	1.0	11
27	Response: Granzyme A: cell death–inducing protease, proinflammatory agent, or both?. Blood, 2009, 114, 3969-3970.	1.4	9
28	hSMG-1 is a granzyme B-associated stress-responsive protein kinase. Journal of Molecular Medicine, 2011, 89, 411-421.	3.9	9
29	Attenuation of Soft-Tissue Sarcomas Resistance to the Cytotoxic Action of TNF- \hat{l}_{\pm} by Restoring p53 Function. PLoS ONE, 2012, 7, e38808.	2.5	8
30	Mechanisms of Cytotoxic Lymphocyte-Mediated Apoptosis and Relationship with the Tumor Suppressor p53. Critical Reviews in Immunology, 2015, 35, 433-449.	0.5	5
31	The Most Common VHL Point Mutation R167Q in Hereditary VHL Disease Interferes with Cell Plasticity Regulation. Cancers, 2021, 13, 3897.	3.7	4
32	p53 reactivating small molecule PRIMA‑1 ^{MET} /APR‑246 regulates genomic instability in MDA‑MB‑231 cells. Oncology Reports, 2022, 47, .	2.6	4
33	Role of p53 in the sensitization of tumor cells to apoptotic cell death. Molecular Immunology, 2002, 38, 977-980.	2.2	3
34	Dual effect of autophagy in the regulation of cell-mediated cytotoxicity. , 2020, , 1-8.		0
35	Selection of tumorâ€'resistant variants following sustained natural killer cellâ€'mediated immune stress. Oncology Reports, 2021, 45, 582-594.	2.6	0
36	Selection of tumorâ€'resistant variants following sustained natural killer cellâ€'mediated immune stress. Oncology Reports, 2020, 45, 582-594.	2.6	0