Giuseppe Parise

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2872530/publications.pdf

Version: 2024-02-01

150	1,697	19	31
papers	citations	h-index	g-index
150	150	150	775 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Electrical Installations in Road Tunnel Design Criteria Tested by Fire Simulations: A Confirmation of the Zoning Approach. IEEE Industry Applications Magazine, 2022, 28, 34-41.	0.3	1
2	Flash Intensity of Arc, Isoflashes Distribution, and Body Surface Area. IEEE Transactions on Industry Applications, 2022, 58, 1730-1736.	3.3	1
3	A Comprehensive Technoeconomic Solution for Demand Control in Ports: Energy Storage Systems Integration. IEEE Transactions on Industry Applications, 2022, 58, 1592-1601.	3.3	32
4	Ethics and Eco-Design for Complex Uses of Energy: What We Need for a Sustainable Future. IEEE Industry Applications Magazine, 2022, 28, 74-79.	0.3	3
5	Short-Circuit Calculations in LV Cold Ironing Systems: Characteristic Currents Method CCM and IEC Method. IEEE Transactions on Industry Applications, 2022, 58, 4394-4400.	3.3	0
6	Protected Volume of Lightning Air-Termination Systems. , 2022, , .		1
7	Switching Criteria for Safety and Integrity Procedures: A Summary. IEEE Industry Applications Magazine, 2021, , 2-12.	0.3	0
8	Operational Resilience of Hospital Power Systems in the Digital Age. IEEE Transactions on Industry Applications, 2021, 57, 94-100.	3.3	6
9	A Simplified Method for Arc Flash Assessment in Low Voltage A.C , 2021, , .		2
10	The Method of "Characteristic―Currents and Countercurrents for Short Circuits Diagnosis. IEEE Transactions on Industry Applications, 2021, 57, 2138-2145.	3.3	5
11	IoT Innovations and Forensic Engineering in the Digital Age. IEEE Transactions on Industry Applications, 2021, 57, 2098-2103.	3 . 3	6
12	Elevator Regenerative Energy Applications with Ultracapacitor and Battery Energy Storage Systems in Complex Buildings. Energies, 2021, 14, 3259.	1.6	7
13	A Basic Assessment of Arc Flash in Low Voltage AC. IEEE Transactions on Industry Applications, 2021, 57, 4513-4519.	3.3	7
14	Safety Upgrades in Domestic Dwellings. Pluggable Off-Line UPSs of Low Quality and Backfeed Hazards. IEEE Transactions on Industry Applications, 2021, 57, 4456-4461.	3.3	1
15	Incident Energy of Arc Flash and Body Surface Area. , 2021, , .		1
16	ECO-Design and Energy Ethics of Microgrids. , 2021, , .		1
17	Integrated System of Energy Storage Technologies for Demand Control and Energy Saving in Ports. , 2021, , .		2
18	Modular Distribution System for EV Parks. , 2021, , .		1

#	Article	IF	CITATIONS
19	Transactive Energy Solution in a Port's Microgrid based on Blockchain Technology. , 2020, , .		7
20	Ultracapacitors for Port Crane Applications: Sizing and Techno-Economic Analysis. Energies, 2020, 13, 2091.	1.6	16
21	Grounding Microgrid Systems in Metropolitan and Commercial Areas. IEEE Transactions on Industry Applications, 2020, 56, 1156-1161.	3.3	8
22	ELECTRICAL INTEGRITY RESILIENCE OF DATA CENTERS AND CRITICAL LOADS. IEEE Transactions on Industry Applications, 2020, , 1-1.	3.3	4
23	Adequacy of Hospital Power Systems as Strategic Operational Structures. , 2020, , .		1
24	"Characteristic" Currents and Countercurrents. For short-Circuits Diagnosis. , 2020, , .		0
25	Safety of domestic dwellings in stressed electrical grids: A case of backfeed hazard. , 2020, , .		3
26	Forensic Implications in the Continuous Discontinuity of IoT Innovations. , 2020, , .		0
27	Aggregation of Users in a Residential/Commercial Building Managed by a Building Energy Management System (BEMS). IEEE Transactions on Industry Applications, 2019, 55, 26-34.	3.3	45
28	Series Faults in Electrical Cords and Extension Cords. , 2019, , .		2
29	Measures to Minimize Series Faults in Electrical Cords and Extension Cords. IEEE Transactions on Industry Applications, 2019, 55, 4551-4556.	3.3	9
30	A Technical First Level for Accident Trials: How to Make Expert Testimony Truly Count in Court. IEEE Industry Applications Magazine, 2019, 25, 65-71.	0.3	2
31	Investigations to Identify Electrical Ignitions of Fires: The Sleuth Engineer Can Draw From an Array of Tools. IEEE Industry Applications Magazine, 2019, 25, 54-59.	0.3	5
32	Systems Design Criteria for Refrigerated Container Parks. IEEE Transactions on Industry Applications, 2019, 55, 2320-2326.	3. 3	6
33	Topology of Integrity Resilience for Service Continuity of Critical Loads. , 2019, , .		2
34	Topology of Continuous Availability for LED Lighting Systems. IEEE Transactions on Industry Applications, 2019, 55, 5659-5665.	3.3	6
35	Grounding Microgrid Systems in Metropolitan and Commercial Areas. , 2019, , .		1
36	A Life Loss Tool for an Optimal Management in the Operation of Insulated LV Power Cables. IEEE Transactions on Industry Applications, 2019, 55, 167-173.	3.3	8

#	Article	IF	CITATIONS
37	Virtual Society of IoT Robosats and Emancipation of Electrical Utilization., 2019,,.		4
38	Net-Metering Benefits for Residential Customers: The Economic Advantages of a Proposed User-Centric Model in Italy. IEEE Industry Applications Magazine, 2018, 24, 39-49.	0.3	40
39	The In-Op Design of Electrical Distribution Systems Based on Microsystem Criteria. IEEE Transactions on Industry Applications, 2018, 54, 32-38.	3.3	11
40	Basic Measures Assisting the Avoidance of Arc Flash. IEEE Transactions on Industry Applications, 2018, 54, 1842-1847.	3.3	16
41	Intrinsically Safe Grounding Systems and Global Grounding Systems. IEEE Transactions on Industry Applications, 2018, 54, 25-31.	3.3	6
42	Evolution of Human Society and of Things Assisted by IoT. , 2018, , .		6
43	Electrical fire ignitions: The evolution assists identifying the origin in the distribution level. , 2018, , .		2
44	Electrical Safety in Street Lighting Systems Against Loss of Service Continuity and Shock Hazards. IEEE Transactions on Industry Applications, 2018, 54, 5711-5716.	3.3	4
45	Comprehensive Peak-Shaving Solutions for Port Cranes. IEEE Transactions on Industry Applications, 2017, 53, 1799-1806.	3.3	40
46	Tests and Monitoring of Grounding Systems in HV/MV Substations. IEEE Transactions on Industry Applications, 2017, 53, 929-935.	3.3	7
47	Demand Side Management in Microgrids for Load Control in Nearly Zero Energy Buildings. IEEE Transactions on Industry Applications, 2017, 53, 1769-1779.	3.3	75
48	Voltage-Drop Calculations and Power Cable Designs for Harbor Electrical Distribution Systems With High Voltage Shore Connection. IEEE Transactions on Industry Applications, 2017, 53, 1807-1814.	3.3	16
49	Designing a power control strategy in a microgrid using PID / fuzzy controller based on battery energy storage. , 2017, , .		20
50	Demand side management in mixed residential/commercial buildings with PV on site generation. , 2017, , .		5
51	Single grounding system intrinsically safe and global grounding system safe as set. , 2016, , .		9
52	Arc flash: Prevention measures in IEC/EN protection approach. , 2016, , .		1
53	Currents Distribution During a Fault in an MV Network: Methods and Measurements. IEEE Transactions on Industry Applications, 2016, 52, 4585-4593.	3.3	18
54	Switching Procedures and Business Continuity Management: The Flock Logic of Multiple Source Systems. IEEE Transactions on Industry Applications, 2016, 52, 60-66.	3.3	16

#	Article	IF	CITATIONS
55	Service Continuity Safety by Design: The Relevance of Electrical Power-System Architectures in Hospitals. IEEE Industry Applications Magazine, 2016, 22, 68-74.	0.3	10
56	A Procedure to Estimate the Energy Requirements for Lighting. IEEE Transactions on Industry Applications, 2016, 52, 34-41.	3.3	13
57	Wise Port and Business Energy Management: Port Facilities, Electrical Power Distribution. IEEE Transactions on Industry Applications, 2016, 52, 18-24.	3.3	84
58	Towards a globalization of safety standards for electrical work. , 2015, , .		1
59	The relevance of the architecture of electrical power systems in hospitals: The service continuity safety by design. , 2015, , .		O
60	The energetic impact of the lighting system in the road tunnels. , 2015, , .		1
61	Safety procedures for electrical work in installations susceptible to unexpected sources of energy. , 2015, , .		2
62	The TN-island system for cold ironing. , 2015, , .		4
63	Grounding System Adequacy of HV/MV Substations in Areas With Reduced Accessibility. IEEE Transactions on Industry Applications, 2015, 51, 2038-2044.	3.3	6
64	The Electrical Systems of Roadway Tunnels: Safety Design and Ecomanagement. IEEE Transactions on Industry Applications, 2015, 51, 1920-1927.	3.3	18
65	Safety System With Harmless First Fault: Complete and IT-M System. IEEE Transactions on Industry Applications, 2015, 51, 2762-2768.	3.3	5
66	Needs of Management of the Grounding Systems. IEEE Transactions on Industry Applications, 2015, 51, 5017-5022.	3.3	10
67	Identification of Global Grounding Systems: The Global Zone of Influence. IEEE Transactions on Industry Applications, 2015, 51, 5044-5049.	3.3	11
68	The Interference of Grounding Systems: The Floating Behavior. IEEE Transactions on Industry Applications, 2015, 51, 5038-5043.	3.3	8
69	Simplified Conservative Testing Method of Touch and Step Voltages by Multiple Auxiliary Electrodes at Reduced Distance. IEEE Transactions on Industry Applications, 2015, 51, 4987-4993.	3.3	29
70	The Energetic Impact of the Lighting System in the Road Tunnels. IEEE Transactions on Industry Applications, 2015, , 1-1.	3.3	5
71	Net metering benefits for residential buildings: A case study in Italy. , 2015, , .		23
72	Interferences between grounding systems in urban and industrial areas. , 2015, , .		2

#	Article	IF	Citations
73	Simulation and sensitivity analysis of a fuzzy-based building automation control system. , 2014, , .		4
74	Collision theory in electric shock risk assessment. , 2014, , .		1
75	An electrical distribution for Marinas. , 2014, , .		0
76	Safety criteria for testing ground systems within their influence zone. , 2014, , .		4
77	Unprotected Faults of Electrical and Extension Cords in AC and DC Systems. IEEE Transactions on Industry Applications, 2014, 50, 4-9.	3.3	36
78	Conservative measurements of touch and step voltages by auxiliary electrodes at reduced distance. , 2014, , .		1
79	Design and Energetic Analysis of an Advanced Control Upgrading Existing Lighting Systems. IEEE Transactions on Industry Applications, 2014, 50, 1338-1347.	3.3	18
80	Life Monitoring Tool of Insulated Cables in Photovoltaic Installations. IEEE Transactions on Industry Applications, 2014, 50, 2156-2163.	3.3	21
81	The architecture of electric power systems: Some special cases. , 2014, , .		7
82	Globality levels of grounding systems. , 2014, , .		10
83	Switching procedures in multiple source systems and the Business Continuity Management: The flock logic of multi-set systems. , 2014, , .		13
84	Criteria for the Definition of the Equipment Seismic Levels: Comparisons Between USA and European Codes. IEEE Transactions on Industry Applications, 2014, 50, 2135-2141.	3.3	9
85	Energy performance of buildings: An useful procedure to estimate the impact of the lighting control systems. , 2014, , .		5
86	Ecodesign of Ever Net-Load Microgrids. IEEE Transactions on Industry Applications, 2014, 50, 10-16.	3.3	28
87	A New Summary on the IEC Protection Against Electric Shock. IEEE Transactions on Industry Applications, 2013, 49, 1004-1011.	3.3	37
88	Transition Theory in Operation of Electrical Installations. IEEE Transactions on Industry Applications, 2013, 49, 1056-1061.	3.3	10
89	Daylight Impact on Energy Performance of Internal Lighting. IEEE Transactions on Industry Applications, 2013, 49, 242-249.	3.3	45
90	Combined Electric Light and Daylight Systems Ecodesign. IEEE Transactions on Industry Applications, 2013, 49, 1062-1070.	3.3	28

#	Article	IF	Citations
91	Energy Performance of Interior Lighting Systems. IEEE Transactions on Industry Applications, 2013, 49, 2793-2801.	3.3	17
92	A Syntax and Semantics of a Language for Operational Procedures. IEEE Transactions on Industry Applications, 2013, 49, 250-255.	3.3	5
93	Seismic qualification of electrical equipment in critical facilities., 2013,,.		6
94	Electrical Distribution for a Reliable Data Center. IEEE Transactions on Industry Applications, 2013, 49, 1697-1702.	3.3	17
95	uFFFDDeaduFFFD Circuits Are Not Always Dead: The Need for Additional Protective Measures. IEEE Industry Applications Magazine, 2013, 19, 47-50.	0.3	O
96	A smart control to operate the lighting system in the road tunnels. , 2013, , .		24
97	DC task team report., 2013,,.		6
98	Unprotected faults of electrical cords and extension cords in AC and DC systems. , 2013, , .		1
99	Simplified Arc-Fault Model: The Reduction Factor of the Arc Current. IEEE Transactions on Industry Applications, 2013, 49, 1703-1710.	3.3	50
100	AC DC power circuits design by microsystem criteria. , 2013, , .		5
101	Seismic Qualification Categories (EQC) of electrical equipment. , 2013, , .		5
102	Criteria for the definition of the Equipment Seismic Levels (ESL): Comparisons between USA and European codes. , $2013, \ldots$		4
103	Electrical distribution for a reliable data center. , 2012, , .		1
104	User Specifications for Operational and Switching Procedures, a Working Group Report. IEEE Transactions on Industry Applications, 2012, 48, 225-228.	3.3	7
105	Energy performance of interior lighting systems. , 2012, , .		11
106	Life monitoring tool of insulated cables in photovoltaic installations. , 2012, , .		11
107	Simplified arc-fault model: The reduction factor of the arc current. , 2012, , .		9
108	Transitions theory in operation of electrical installations. , 2012, , .		4

#	Article	IF	CITATIONS
109	A new summary on the iec protection against electric shock. , 2012, , .		24
110	A novel approach to the electrical safety of low-voltage installations: the TN-Island grounding system. European Transactions on Electrical Power, 2012, 22, 616-626.	1.0	2
111	Branch circuits ecodesign., 2011, , .		14
112	A Darwinian evolution of electrical power systems design for preventing seismic risks in sensitive buildings. , 2011 , , .		13
113	Grounding system in marinas: The micro-system approach. , 2011, , .		0
114	"Dead" circuits are not always dead. , 2011, , .		0
115	Electrical Safety of Street Light Systems. IEEE Transactions on Power Delivery, 2011, 26, 1952-1959.	2.9	12
116	Electrical Power Systems Availability in Buildings Exposed to Seismic Hazardâ€"Part I: Electrical Criteria and Part II: Mechanical Criteria. IEEE Transactions on Industry Applications, 2011, 47, 292-300.	3.3	20
117	Grounding System in Marinas: The Microsystem Approach. IEEE Transactions on Industry Applications, 2011, 47, 2204-2209.	3.3	5
118	Ecodesign of Lighting Systems. IEEE Industry Applications Magazine, 2011, 17, 14-19.	0.3	33
119	Combined electric light and daylight systems ecodesign. , 2011, , .		9
120	A syntax and semantics of a language for operational procedures. , 2011, , .		7
121	Localized fire ignition hazard in branch circuits, cords and connected equipment. , 2011, , .		7
122	Daylight impact on energy performance of internal lighting. , 2011, , .		9
123	Microsystem criteria in branch circuits design. , 2011, , .		14
124	User specifications for operational and switching procedures, a working group report., 2011,,.		14
125	Structured Distribution of Electric Power Systems: The Example of a Roadway Tunnel Architecture. IEEE Transactions on Industry Applications, 2010, 46, 2099-2105.	3.3	19
126	Level, Class, and Prospected Safety Performance of a Lightning Protection System for a Complex of Structures (LPCS). IEEE Transactions on Industry Applications, 2010, 46, 2106-2110.	3.3	10

#	Article	IF	CITATIONS
127	Microsystem criteria in electrical installations ecodesign. , 2010, , .		15
128	Electrical power systems availability in buildings exposed to seismic hazard., 2010,,.		0
129	Dead work is vulnerable to unexpected power sources. , 2010, , .		2
130	Impact of building automation, controls and building management on energy performance of lighting systems. , 2009, , .		31
131	Transitions Theory for Intersections/Nodes and Generalized Euclidean Kinematics in Operation of Electrical Installations., 2009,,.		11
132	Genetic code of electrical operational procedures: Lock-out systems, simulators and training. , 2009, , .		1
133	Architecture Impact on Integrity of Electrical Installations: Cut&Tie Rule, Ring Configuration, Floating Node. IEEE Transactions on Industry Applications, 2009, 45, 1903-1909.	3.3	25
134	Relevance of Competence in Risk Reduction for Electrical Safety. IEEE Transactions on Industry Applications, 2008, 44, 1892-1895.	3.3	25
135	Measurements of Touch and Step Voltages Adopting Current Auxiliary Electrodes at Reduced Distance. IEEE Transactions on Industry Applications, 2008, 44, 1896-1901.	3.3	29
136	Architecture impact on integrity of electrical installations: Cut&tie rule, ring configuration, floating node., 2008,,.		3
137	Prospected Evolution for Low Voltage Customers: Ecodesign of the Electrical Distribution System. , 2008, , .		25
138	Four color theorem explained by electrical operational procedures?. , 2008, , .		10
139	Architecture of Electrical Installations: The Node Double Two., 2008,,.		10
140	Structural Design Criteria for Energy Savings in Electrical Installations. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2007, , .	0.0	11
141	Relevance of Competence in Risk Reduction for Electrical Safety. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2007, , .	0.0	4
142	Structural Design Criteria for Energy Savings in Electrical Installations. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2007, , .	0.0	0
143	An Adaptive Criterion to Design the Lighting System in the Road Tunnels. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2007, , .	0.0	5
144	Level, Class and Prospected Safety Performance of a Lightning Protection System for a Complex of Structures (LPCS)., 2007,,.		0

#	Article	IF	CITATIONS
145	Electric Arc Behavior: Phase Angle & Department of the Electric Ar		5
146	Transitions Maps for Integrity in Operational Procedures of Electrical Installations., 2007,,.		15
147	An Adaptive Criterion to Design the Lighting System in the Road Tunnels. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2007, , .	0.0	16
148	TN-Island Grounding System and the House of the Future. , 2006, , .		14
149	Comprehensive Design of Electrical Installations by Integrating System Configuration and Operational Safety Aspects. Conference Record - IAS Annual Meeting (IEEE Industry Applications) Tj ETQq1 1 0.7	84 3. b4 rgl	BT 10 verlock
150	A New Approach to Calculate the Decaying AC Contributions to Short Circuit: The "Characteristic" Currents Method. IEEE Transactions on Industry Applications, 1995, 31, 214-221.	3.3	20