Eric Oldfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2872286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mycobacterial membrane protein Large 3â€like <scp>â€family</scp> proteins in bacteria, protozoa, fungi, plants, and animals: A bioinformatics and structural investigation. Proteins: Structure, Function and Bioinformatics, 2022, 90, 776-790.	2.6	3
2	In Vivo Efficacy of SQ109 against Leishmania donovani, Trypanosoma spp. and Toxoplasma gondii and In Vitro Activity of SQ109 Metabolites. Biomedicines, 2022, 10, 670.	3.2	4
3	A Structural and Bioinformatics Investigation of a Fungal Squalene Synthase and Comparisons with Other Membrane Proteins. ACS Omega, 2022, 7, 22601-22612.	3.5	2
4	Terpene Cyclases and Prenyltransferases: Structures and Mechanisms of Action. ACS Catalysis, 2021, 11, 290-303.	11.2	13
5	Structure, <i>In Vivo</i> Detection, and Antibacterial Activity of Metabolites of SQ109, an Anti-Infective Drug Candidate. ACS Infectious Diseases, 2021, 7, 2492-2507.	3.8	13
6	Immuno-antibiotics: targeting microbial metabolic pathways sensed by unconventional T cells. Immunotherapy Advances, 2021, 1, .	3.0	3
7	A polymeric approach toward resistance-resistant antimicrobial agent with dual-selective mechanisms of action. Science Advances, 2021, 7, .	10.3	50
8	Editor's Note: Relates to: â€~Immuno-antibiotics: targeting microbial metabolic pathways sensed by unconventional T cells'. Immunotherapy Advances, 2021, 1, .	3.0	0
9	SQ109 inhibits proliferation of Leishmania donovani by disruption of intracellular Ca2+ homeostasis, collapsing the mitochondrial electrochemical potential (l̃ "ſ̄ʿm) and affecting acidocalcisomes. Parasitology Research, 2020, 119, 649-657.	1.6	23
10	Discovery of Prenyltransferase Inhibitors with <i>In Vitro</i> and <i>In Vivo</i> Antibacterial Activity. ACS Infectious Diseases, 2020, 6, 2979-2993.	3.8	14
11	COVID-19 and Other Pandemics: How Might They Be Prevented?. ACS Infectious Diseases, 2020, 6, 1563-1566.	3.8	16
12	Mycobacterium tuberculosis releases an antacid that remodels phagosomes. Nature Chemical Biology, 2019, 15, 889-899.	8.0	53
13	Aspergillus flavus squalene synthase as an antifungal target: Expression, activity, and inhibition. Biochemical and Biophysical Research Communications, 2019, 512, 517-523.	2.1	11
14	A Structural Change in Butyrophilin upon Phosphoantigen Binding Underlies Phosphoantigen-Mediated Vγ9Vδ2ÂT Cell Activation. Immunity, 2019, 50, 1043-1053.e5.	14.3	94
15	Complex structures of MoeN5 with substrate analogues suggest sequential catalytic mechanism. Biochemical and Biophysical Research Communications, 2019, 511, 800-805.	2.1	4
16	Discovery of Lipophilic Bisphosphonates That Target Bacterial Cell Wall and Quinone Biosynthesis. Journal of Medicinal Chemistry, 2019, 62, 2564-2581.	6.4	18
17	Farnesyl Pyrophosphate Synthase as a Target for Drug Development: Discovery of Natural-Product-Derived Inhibitors and Their Activity in Pancreatic Cancer Cells. Journal of Medicinal Chemistry, 2019, 62, 10867-10896.	6.4	19
18	Catalytic Role of Conserved Asparagine, Glutamine, Serine, and Tyrosine Residues in Isoprenoid Biosynthesis Enzymes. ACS Catalysis, 2018, 8, 4299-4312.	11.2	19

#	Article	IF	CITATIONS
19	Alkynyl-containing phenylthiazoles: Systemically active antibacterial agents effective against methicillin-resistant Staphylococcus aureus (MRSA). European Journal of Medicinal Chemistry, 2018, 148, 195-209.	5.5	36
20	Remarkable similarity in Plasmodium falciparum and Plasmodium vivax geranylgeranyl diphosphate synthase dynamics and its implication for antimalarial drug design. Chemical Biology and Drug Design, 2018, 91, 1068-1077.	3.2	5
21	"Headâ€ŧoâ€Middle―and "Headâ€ŧoâ€Tail―cis â€Prenyl Transferases: Structure of Isosesquilavandulyl Diphosphate Synthase. Angewandte Chemie, 2018, 130, 691-695.	2.0	5
22	"Headâ€ŧoâ€Middle―and "Headâ€ŧoâ€Tail― <i>cis</i> â€Prenyl Transferases: Structure of Isosesquilavar Diphosphate Synthase. Angewandte Chemie - International Edition, 2018, 57, 683-687.	13.8	24
23	The Mevalonate Pathway Is a Druggable Target for Vaccine Adjuvant Discovery. Cell, 2018, 175, 1059-1073.e21.	28.9	148
24	Bisphosphonate-Generated ATP-Analogs Inhibit Cell Signaling Pathways. Journal of the American Chemical Society, 2018, 140, 7568-7578.	13.7	27
25	Structure–activity relationship investigation of coumarin–chalcone hybrids with diverse side-chains as acetylcholinesterase and butyrylcholinesterase inhibitors. Molecular Diversity, 2018, 22, 893-906.	3.9	17
26	Phenylthiazole Antibacterial Agents Targeting Cell Wall Synthesis Exhibit Potent Activity in Vitro and in Vivo against Vancomycin-Resistant Enterococci. Journal of Medicinal Chemistry, 2017, 60, 2425-2438.	6.4	46
27	Spectroscopic and Computational Investigations of Ligand Binding to IspH: Discovery of Nonâ€diphosphate Inhibitors. ChemBioChem, 2017, 18, 914-920.	2.6	10
28	Anticancer Activity of Polyoxometalate-Bisphosphonate Complexes: Synthesis, Characterization, In Vitro and In Vivo Results. Inorganic Chemistry, 2017, 56, 7558-7565.	4.0	44
29	Headâ€ŧoâ€Head Prenyl Synthases in Pathogenic Bacteria. ChemBioChem, 2017, 18, 985-991.	2.6	6
30	Pulsed Electron Paramagnetic Resonance Insights into the Ligand Environment of Copper in Drosophila Lysyl Oxidase. Biochemistry, 2017, 56, 3770-3779.	2.5	5
31	Combining Vγ9Vδ2 T Cells with a Lipophilic Bisphosphonate Efficiently Kills Activated Hepatic Stellate Cells. Frontiers in Immunology, 2017, 8, 1381.	4.8	13
32	Structure and Function of a "Headâ€ŧoâ€Middle―Prenyltransferase: Lavandulyl Diphosphate Synthase. Angewandte Chemie, 2016, 128, 4799-4802.	2.0	9
33	Moenomycin Biosynthesis: Structure and Mechanism of Action of the Prenyltransferase MoeN5. Angewandte Chemie - International Edition, 2016, 55, 4716-4720.	13.8	19
34	Structure and Function of a "Headâ€ŧoâ€Middle―Prenyltransferase: Lavandulyl Diphosphate Synthase. Angewandte Chemie - International Edition, 2016, 55, 4721-4724.	13.8	32
35	Titelbild: Structure and Function of a "Headâ€ŧoâ€Middle―Prenyltransferase: Lavandulyl Diphosphate Synthase (Angew. Chem. 15/2016). Angewandte Chemie, 2016, 128, 4689-4689.	2.0	2
36	Chemical Exchange Saturation Transfer (CEST) Agents: Quantum Chemistry and MRI. Chemistry - A European Journal, 2016, 22, 264-271.	3.3	14

#	Article	IF	CITATIONS
37	Bacterial Cell Growth Inhibitors Targeting Undecaprenyl Diphosphate Synthase and Undecaprenyl Diphosphate Phosphatase. ChemMedChem, 2016, 11, 2311-2319.	3.2	20
38	Structure, Function, and Inhibition of <i>Staphylococcus aureus</i> Heptaprenyl Diphosphate Synthase. ChemMedChem, 2016, 11, 1915-1923.	3.2	23
39	Dynamic Structure and Inhibition of a Malaria Drug Target: Geranylgeranyl Diphosphate Synthase. Biochemistry, 2016, 55, 5180-5190.	2.5	8
40	Isoprenoid Biosynthesis Inhibitors Targeting Bacterial Cell Growth. ChemMedChem, 2016, 11, 2205-2215.	3.2	37
41	A Highly Efficient Single-Chain Metal–Organic Nanoparticle Catalyst for Alkyne–Azide "Click― Reactions in Water and in Cells. Journal of the American Chemical Society, 2016, 138, 11077-11080.	13.7	190
42	Inhibition of Leishmania mexicana Growth by the Tuberculosis Drug SQ109. Antimicrobial Agents and Chemotherapy, 2016, 60, 6386-6389.	3.2	21
43	Moenomycin Biosynthesis: Structure and Mechanism of Action of the Prenyltransferase MoeN5. Angewandte Chemie, 2016, 128, 4794-4798.	2.0	3
44	Structure and Function of Four Classes of the 4Fe–4S Protein, IspH. Biochemistry, 2016, 55, 4119-4129.	2.5	14
45	Structures of Trypanosome Vacuolar Soluble Pyrophosphatases: Antiparasitic Drug Targets. ACS Chemical Biology, 2016, 11, 1362-1371.	3.4	15
46	Titelbild: Structures of Iridoid Synthase fromCantharanthus roseuswith Bound NAD+, NADPH, or NAD+/10-Oxogeranial: Reaction Mechanisms (Angew. Chem. 51/2015). Angewandte Chemie, 2015, 127, 15517-15517.	2.0	0
47	Structures of Iridoid Synthase from <i>Cantharanthus roseus</i> with Bound NAD ⁺ , NADPH, or NAD ⁺ /10â€Oxogeranial: Reaction Mechanisms. Angewandte Chemie - International Edition, 2015, 54, 15478-15482.	13.8	21
48	Polyoxomolybdate Bisphosphonate Heterometallic Complexes: Synthesis, Structure, and Activity on a Breast Cancer Cell Line. Chemistry - A European Journal, 2015, 21, 10537-10547.	3.3	43
49	Antiinfectives targeting enzymes and the proton motive force. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7073-82.	7.1	138
50	lspH–RPS1 and lspH–UbiA: "Rosetta stone―proteins. Chemical Science, 2015, 6, 6813-6822.	7.4	6
51	Farnesyl Diphosphate Synthase Inhibitors With Unique Ligand-Binding Geometries. ACS Medicinal Chemistry Letters, 2015, 6, 349-354.	2.8	20
52	SQ109, a New Drug Lead for Chagas Disease. Antimicrobial Agents and Chemotherapy, 2015, 59, 1950-1961.	3.2	51
53	Antibacterial Drug Leads: DNA and Enzyme Multitargeting. Journal of Medicinal Chemistry, 2015, 58, 1215-1227.	6.4	48
54	In Vitro and in Vivo Activity of Multitarget Inhibitors against <i>Trypanosoma brucei</i> . ACS Infectious Diseases, 2015, 1, 388-398.	3.8	5

#	Article	IF	CITATIONS
55	Oxa, Thia, Heterocycle, and Carborane Analogues of SQ109: Bacterial and Protozoal Cell Growth Inhibitors. ACS Infectious Diseases, 2015, 1, 215-221.	3.8	31
56	Tuberculosis Terpene Targets. Chemistry and Biology, 2015, 22, 437-438.	6.0	4
57	Atomic-Resolution Structures of Discrete Stages on the Reaction Coordinate of the [Fe 4 S 4] Enzyme IspG (GcpE). Journal of Molecular Biology, 2015, 427, 2220-2228.	4.2	14
58	<i>In Vitro</i> and <i>In Vivo</i> Investigation of the Inhibition of Trypanosoma brucei Cell Growth by Lipophilic Bisphosphonates. Antimicrobial Agents and Chemotherapy, 2015, 59, 7530-7539.	3.2	13
59	Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11048-11053.	7.1	83
60	A Molecular Dynamics Investigation of <i>Mycobacterium tuberculosis</i> Prenyl Synthases: Conformational Flexibility and Implications for Computerâ€aided Drug Discovery. Chemical Biology and Drug Design, 2015, 85, 756-769.	3.2	14
61	Crystal structures of ligandâ€bound octaprenyl pyrophosphate synthase from <i>Escherichia coli</i> reveal the catalytic and chainâ€length determining mechanisms. Proteins: Structure, Function and Bioinformatics, 2015, 83, 37-45.	2.6	22
62	Squalene Synthase As a Target for Chagas Disease Therapeutics. PLoS Pathogens, 2014, 10, e1004114.	4.7	64
63	Taxodione and arenarone inhibit farnesyl diphosphate synthase by binding to the isopentenyl diphosphate site. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2530-9.	7.1	34
64	Structural and thermodynamic basis of the inhibition of <i>Leishmania major</i> farnesyl diphosphate synthase by nitrogen-containing bisphosphonates. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 802-810.	2.5	20
65	Resistance-resistant antibiotics. Trends in Pharmacological Sciences, 2014, 35, 664-674.	8.7	101
66	Structural and Functional Analysis of Bacillus subtilis YisP Reveals a Role of Its Product in Biofilm Production. Chemistry and Biology, 2014, 21, 1557-1563.	6.0	44
67	A combination therapy for KRAS-driven lung adenocarcinomas using lipophilic bisphosphonates and rapamycin. Science Translational Medicine, 2014, 6, 263ra161.	12.4	47
68	Multitarget Drug Discovery for Tuberculosis and Other Infectious Diseases. Journal of Medicinal Chemistry, 2014, 57, 3126-3139.	6.4	205
69	Undecaprenyl Diphosphate Synthase Inhibitors: Antibacterial Drug Leads. Journal of Medicinal Chemistry, 2014, 57, 5693-5701.	6.4	43
70	Structure and Inhibition of Tuberculosinol Synthase and Decaprenyl Diphosphate Synthase from <i>Mycobacterium tuberculosis</i> . Journal of the American Chemical Society, 2014, 136, 2892-2896.	13.7	37
71	Dronedarone, an Amiodarone Analog with Improved Anti-Leishmania mexicana Efficacy. Antimicrobial Agents and Chemotherapy, 2014, 58, 2295-2303.	3.2	33
72	Bioorganometallic Chemistry with IspG and IspH: Structure, Function, and Inhibition of the [Fe ₄ S ₄] Proteins Involved in Isoprenoid Biosynthesis. Angewandte Chemie - International Edition, 2014, 53, 4294-4310.	13.8	50

#	Article	IF	CITATIONS
73	Inhibition of the 4Fe–4S proteins IspG and IspH: an EPR, ENDOR and HYSCORE investigation. Chemical Science, 2014, 5, 1642-1649.	7.4	14
74	Insights into the Binding of Pyridines to the Iron–Sulfur Enzyme IspH. Journal of the American Chemical Society, 2014, 136, 7926-7932.	13.7	20
75	Structure, function and inhibition of ent-kaurene synthase from Bradyrhizobium japonicum. Scientific Reports, 2014, 4, 6214.	3.3	44
76	Insights into TIMâ€Barrel Prenyl Transferase Mechanisms: Crystal Structures of PcrB from <i>Bacillus subtilis</i> and <i>Staphylococcus aureus</i> . ChemBioChem, 2013, 14, 195-199.	2.6	10
77	Structures of Fluoro, Amino, and Thiol Inhibitors Bound to the [Fe ₄ S ₄] Protein IspH. Angewandte Chemie - International Edition, 2013, 52, 2118-2121.	13.8	25
78	Farnesyl Diphosphate Synthase Inhibitors from <i>In Silico</i> Screening. Chemical Biology and Drug Design, 2013, 81, 742-748.	3.2	42
79	Chemo-Immunotherapeutic Antimalarials Targeting Isoprenoid Biosynthesis. ACS Medicinal Chemistry Letters, 2013, 4, 423-427.	2.8	35
80	Isoprenoid Biosynthesis: Ferraoxetane or Allyl Anion Mechanism for IspH Catalysis?. Angewandte Chemie - International Edition, 2013, 52, 6522-6525.	13.8	17
81	Characterization of Potential Drug Targets Farnesyl Diphosphate Synthase and Geranylgeranyl Diphosphate Synthase in Schistosoma mansoni. Antimicrobial Agents and Chemotherapy, 2013, 57, 5969-5976.	3.2	9
82	Antibacterial drug leads targeting isoprenoid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 123-128.	7.1	129
83	Isoprenoid Biosynthesis: Ferraoxetane or Allyl Anion Mechanism for IspH Catalysis?. Angewandte Chemie, 2013, 125, 6650-6653.	2.0	4
84	Structure, function and inhibition of the two- and three-domain 4Fe-4S IspG proteins. Proceedings of the United States of America, 2012, 109, 8558-8563.	7.1	29
85	Lipophilic analogs of zoledronate and risedronate inhibit <i>Plasmodium</i> geranylgeranyl diphosphate synthase (GGPPS) and exhibit potent antimalarial activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4058-4063.	7.1	61
86	Discovery of acetylene hydratase activity of the iron–sulphur protein IspH. Nature Communications, 2012, 3, 1042.	12.8	34
87	Are Free Radicals Involved in IspH Catalysis? An EPR and Crystallographic Investigation. Journal of the American Chemical Society, 2012, 134, 11225-11234.	13.7	45
88	Head-to-Head Prenyl Tranferases: Anti-Infective Drug Targets. Journal of Medicinal Chemistry, 2012, 55, 4367-4372.	6.4	19
89	HIV-1 Integrase Inhibitor-Inspired Antibacterials Targeting Isoprenoid Biosynthesis. ACS Medicinal Chemistry Letters, 2012, 3, 402-406.	2.8	16
90	Insights into the Mechanism of the Antibioticâ€Synthesizing Enzyme MoeO5 from Crystal Structures of Different Complexes. Angewandte Chemie - International Edition, 2012, 51, 4157-4160.	13.8	16

#	Article	IF	CITATIONS
91	Back Cover: Insights into the Mechanism of the Antibiotic-Synthesizing Enzyme MoeO5 from Crystal Structures of Different Complexes (Angew. Chem. Int. Ed. 17/2012). Angewandte Chemie - International Edition, 2012, 51, 4240-4240.	13.8	0
92	Dual Dehydrosqualene/Squalene Synthase Inhibitors: Leads for Innate Immune Systemâ€Based Therapeutics. ChemMedChem, 2012, 7, 561-564.	3.2	18
93	Polyoxometalates Functionalized by Bisphosphonate Ligands: Synthesis, Structural, Magnetic, and Spectroscopic Characterizations and Activity on Tumor Cell Lines. Inorganic Chemistry, 2012, 51, 7921-7931.	4.0	74
94	Terpene Biosynthesis: Modularity Rules. Angewandte Chemie - International Edition, 2012, 51, 1124-1137.	13.8	286
95	Pyridine Inhibitor Binding to the 4Fe-4S ProteinA. aeolicusIspH (LytB): A HYSCORE Investigation. Journal of the American Chemical Society, 2011, 133, 6525-6528.	13.7	35
96	An ENDOR and HYSCORE Investigation of a Reaction Intermediate in IspG (GcpE) Catalysis. Journal of the American Chemical Society, 2011, 133, 8400-8403.	13.7	33
97	Applying Molecular Dynamics Simulations to Identify Rarely Sampled Ligandâ€bound Conformational States of Undecaprenyl Pyrophosphate Synthase, an Antibacterial Target. Chemical Biology and Drug Design, 2011, 77, 412-420.	3.2	38
98	Nonâ€Bisphosphonate Inhibitors of Isoprenoid Biosynthesis Identified via Computerâ€Aided Drug Design. Chemical Biology and Drug Design, 2011, 78, 323-332.	3.2	49
99	Indirect Stimulation of Human Vγ2Vδ2 T Cells through Alterations in Isoprenoid Metabolism. Journal of Immunology, 2011, 187, 5099-5113.	0.8	79
100	Tetra―to Dodecanuclear Oxomolybdate Complexes with Functionalized Bisphosphonate Ligands: Activity in Killing Tumor Cells. Chemistry - A European Journal, 2010, 16, 13741-13748.	3.3	70
101	Lipophilic Pyridinium Bisphosphonates: Potent γ <i>δ</i> T Cell Stimulators. Angewandte Chemie - International Edition, 2010, 49, 1136-1138.	13.8	63
102	Diterpene cyclases and the nature of the isoprene fold. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2417-2432.	2.6	131
103	Mechanism of action and inhibition of dehydrosqualene synthase. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21337-21342.	7.1	66
104	Lipophilic Bisphosphonates Are Potent Inhibitors of Plasmodium Liver-Stage Growth. Antimicrobial Agents and Chemotherapy, 2010, 54, 2987-2993.	3.2	52
105	Organometallic mechanism of action and inhibition of the 4Fe-4S isoprenoid biosynthesis protein GcpE (IspG). Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11189-11193.	7.1	66
106	Bioorganometallic mechanism of action, and inhibition, of IspH. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4522-4527.	7.1	86
107	Inhibition of the Fe ₄ S ₄ -Cluster-Containing Protein IspH (LytB): Electron Paramagnetic Resonance, Metallacycles, and Mechanisms. Journal of the American Chemical Society, 2010, 132, 6719-6727.	13.7	61
108	Targeting Isoprenoid Biosynthesis for Drug Discovery: Bench to Bedside. Accounts of Chemical Research, 2010, 43, 1216-1226.	15.6	119

#	Article	IF	CITATIONS
109	Protein Structure Refinement Using ¹³ Cα Chemical Shift Tensors. Journal of the American Chemical Society, 2009, 131, 985-992.	13.7	54
110	Thermodynamics of Bisphosphonates Binding to Human Bone: A Two-Site Model. Journal of the American Chemical Society, 2009, 131, 8374-8375.	13.7	90
111	Lipophilic Bisphosphonates as Dual Farnesyl/Geranylgeranyl Diphosphate Synthase Inhibitors: An X-ray and NMR Investigation. Journal of the American Chemical Society, 2009, 131, 5153-5162.	13.7	159
112	Phosphonosulfonates Are Potent, Selective Inhibitors of Dehydrosqualene Synthase and Staphyloxanthin Biosynthesis in Staphylococcus aureus. Journal of Medicinal Chemistry, 2009, 52, 976-988.	6.4	59
113	Structures of a potent phenylalkyl bisphosphonate inhibitor bound to farnesyl and geranylgeranyl diphosphate synthases. Proteins: Structure, Function and Bioinformatics, 2008, 73, 431-439.	2.6	40
114	Bisphosphonate inhibitors of ATP-mediated HIV-1 reverse transcriptase catalyzed excision of chain-terminating 3â€2-azido, 3â€2-deoxythymidine: A QSAR investigation. Bioorganic and Medicinal Chemistry, 2008, 16, 8959-8967.	3.0	22
115	A Cholesterol Biosynthesis Inhibitor Blocks <i>Staphylococcus aureus</i> Virulence. Science, 2008, 319, 1391-1394.	12.6	422
116	Inhibition of Geranylgeranyl Diphosphate Synthase by Bisphosphonates: A Crystallographic and Computational Investigation. Journal of Medicinal Chemistry, 2008, 51, 5594-5607.	6.4	73
117	Bisphosphonate Inhibition of a <i>Plasmodium</i> Farnesyl Diphosphate Synthase and a General Method for Predicting Cell-Based Activity from Enzyme Data. Journal of Medicinal Chemistry, 2008, 51, 7827-7833.	6.4	38
118	Structure of (<i>E</i>)-4-Hydroxy-3-methyl-but-2-enyl Diphosphate Reductase, the Terminal Enzyme of the Non-Mevalonate Pathway. Journal of the American Chemical Society, 2008, 130, 17206-17207.	13.7	91
119	Photoaffinity Antigens for Human Î ³ δT Cells. Journal of Immunology, 2008, 181, 7738-7750.	0.8	49
120	The Farnesyl-diphosphate/Geranylgeranyl-diphosphate Synthase of Toxoplasma gondii Is a Bifunctional Enzyme and a Molecular Target of Bisphosphonates. Journal of Biological Chemistry, 2007, 282, 30804-30816.	3.4	82
121	Bisphosphonates as Inhibitors of Trypanosoma cruzi Hexokinase. Journal of Biological Chemistry, 2007, 282, 12377-12387.	3.4	57
122	Bisphosphonates target multiple sites in both cis- and trans-prenyltransferases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10022-10027.	7.1	173
123	A Solid State13C NMR, Crystallographic, and Quantum Chemical Investigation of Phenylalanine and Tyrosine Residues in Dipeptides and Proteins. Journal of the American Chemical Society, 2007, 129, 7385-7392.	13.7	15
124	Activity of Sulfonium Bisphosphonates on Tumor Cell Lines. Journal of Medicinal Chemistry, 2007, 50, 6067-6079.	6.4	15
125	C13NMR spectroscopy of carbon nanohorns. Physical Review B, 2006, 73, .	3.2	36
126	Activity of Nitrogen-Containing and Non-Nitrogen-Containing Bisphosphonates on Tumor Cell Lines. Journal of Medicinal Chemistry, 2006, 49, 5804-5814.	6.4	61

#	Article	IF	CITATIONS
127	Solid-State NMR, Crystallographic, and Computational Investigation of Bisphosphonates and Farnesyl Diphosphate Synthaseâ^'Bisphosphonate Complexes. Journal of the American Chemical Society, 2006, 128, 14485-14497.	13.7	89
128	Enthalpy versus Entropy-Driven Binding of Bisphosphonates to Farnesyl Diphosphate Synthase. Journal of the American Chemical Society, 2006, 128, 3524-3525.	13.7	42
129	Isoprenoid Biosynthesis as a Drug Target:Â Bisphosphonate Inhibition ofEscherichia coliK12 Growth and Synergistic Effects of Fosmidomycin. Journal of Medicinal Chemistry, 2006, 49, 7331-7341.	6.4	52
130	Amiodarone Has Intrinsic Anti- <i>Trypanosoma cruzi</i> Activity and Acts Synergistically with Posaconazole. Journal of Medicinal Chemistry, 2006, 49, 892-899.	6.4	162
131	Structural Studies of Vγ2Vδ2 T Cell Phosphoantigens. Chemistry and Biology, 2006, 13, 985-992.	6.0	23
132	Pyridinium-1-yl Bisphosphonates Are Potent Inhibitors of Farnesyl Diphosphate Synthase and Bone Resorption. Journal of Medicinal Chemistry, 2005, 48, 2957-2963.	6.4	77
133	Structure and mechanism of the farnesyl diphosphate synthase from Trypanosoma cruzi: Implications for drug design. Proteins: Structure, Function and Bioinformatics, 2005, 62, 80-88.	2.6	123
134	Quantum chemical studies of protein structure. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 1347-1361.	4.0	40
135	A Crystallographic Investigation of Phosphoantigen Binding to Isopentenyl Pyrophosphate/Dimethylallyl Pyrophosphate Isomerase. Journal of the American Chemical Society, 2005, 127, 536-537.	13.7	12
136	Crystallization and preliminary X-ray diffraction study of the farnesyl diphosphate synthase fromTrypanosoma brucei. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1863-1866.	2.5	14
137	Synthesis of chiral phosphoantigens and their activity in Î ³ δT cell stimulation. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4471-4477.	2.2	20
138	Cytochrome P450: An Investigation of the Mössbauer Spectra of a Reaction Intermediate and an Fe(IV)O Model System. Journal of the American Chemical Society, 2004, 126, 4470-4471.	13.7	42
139	Quantitative Structureâ^'Activity Relationships for γδT Cell Activation by Bisphosphonates. Journal of Medicinal Chemistry, 2004, 47, 375-384.	6.4	114
140	Effects of Bisphosphonates on the Growth of Entamoeba histolytica and Plasmodium Species in Vitro and in Vivo. Journal of Medicinal Chemistry, 2004, 47, 175-187.	6.4	155
141	Farnesyl Pyrophosphate Synthase Is an Essential Enzyme in Trypanosoma brucei. Journal of Biological Chemistry, 2003, 278, 17075-17083.	3.4	79
142	Quantitative Structureâ^'Activity Relations for γδT Cell Activation by Phosphoantigens. Journal of Medicinal Chemistry, 2002, 45, 4868-4874.	6.4	32
143	57Fe Mössbauer Isomer Shifts of Heme Protein Model Systems:  Electronic Structure Calculations. Journal of the American Chemical Society, 2002, 124, 7829-7839.	13.7	97
144	Mössbauer Quadrupole Splittings and Electronic Structure in Heme Proteins and Model Systems: A Density Functional Theory Investigation. Journal of the American Chemical Society, 2002, 124, 13921-13930.	13.7	65

#	Article	IF	CITATIONS
145	Carbon-13 NMR Shielding in the Twenty Common Amino Acids:Â Comparisons with Experimental Results in Proteins. Journal of the American Chemical Society, 2002, 124, 5486-5495.	13.7	90
146	CHEMICALSHIFTS INAMINOACIDS, PEPTIDES, ANDPROTEINS: From Quantum Chemistry to Drug Design. Annual Review of Physical Chemistry, 2002, 53, 349-378.	10.8	112
147	Inhibition of Geranylgeranyl Diphosphate Synthase by Bisphosphonates and Diphosphates:Â A Potential Route to New Bone Antiresorption and Antiparasitic Agents. Journal of Medicinal Chemistry, 2002, 45, 2185-2196.	6.4	89
148	Nuclear Magnetic Resonance Shifts in Paramagnetic Metalloporphyrins and Metalloproteins. Journal of the American Chemical Society, 2002, 124, 13911-13920.	13.7	94
149	Activity of Bisphosphonates againstTrypanosoma bruceirhodesiense. Journal of Medicinal Chemistry, 2002, 45, 2904-2914.	6.4	101
150	Magic-angle spinning31P NMR spectroscopy of condensed phosphates in parasitic protozoa: visualizing the invisible. FEBS Letters, 2002, 523, 207-212.	2.8	32
151	NMR evidence of a spatially resolved oscillation in the Ef-LDOS in a nanoscale platinum electrocatalyst. Chemical Physics Letters, 2002, 361, 183-188.	2.6	6
152	Theoretical Investigation of19F NMR Chemical Shielding Tensors in Fluorobenzenes. Journal of Physical Chemistry A, 2001, 105, 8098-8104.	2.5	36
153	Bisphosphonates Inhibit the Growth ofTrypanosomabrucei,Trypanosomacruzi,Leishmaniadonovani,Toxoplasmagondii, andPlasmodiumfalciparum:Â A Potential Route to Chemotherapy. Journal of Medicinal Chemistry, 2001, 44 909-916	6.4	312
154	An Experimental and Theoretical Investigation of the Chemical Shielding Tensors of13Cαof Alanine, Valine, and Leucine Residues in Solid Peptides and in Proteins in Solution. Journal of the American Chemical Society, 2001, 123, 10362-10369.	13.7	54
155	Electronic Properties at a Metal-Solution Interface as Viewed by Solid-State NMR. ACS Symposium Series, 2001, , 26-39.	0.5	2
156	Bisphosphonates Are Potent Inhibitors of Trypanosoma cruzi Farnesyl Pyrophosphate Synthase. Journal of Biological Chemistry, 2001, 276, 33930-33937.	3.4	134
157	Vacuolar proton pyrophosphatase activity and pyrophosphate (PPi) in Toxoplasma gondii as possible chemotherapeutic targets. Biochemical Journal, 2000, 349, 737-745.	3.7	72
158	31P NMR Spectroscopy of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. Journal of Biological Chemistry, 2000, 275, 28356-28362.	3.4	85
159	Expression of doubly labeled Saccharomyces cerevisiae iso -1 ferricytochrome c and 1 H, 13 C and 15 N chemical shift assignments by multidimensional NMR. FEBS Letters, 2000, 482, 25-30.	2.8	7
160	Experimental, Hartreeâ^'Fock, and Density Functional Theory Investigations of the Charge Density, Dipole Moment, Electrostatic Potential, and Electric Field Gradients inl-Asparagine Monohydrate. Journal of the American Chemical Society, 2000, 122, 4708-4717.	13.7	65
161	A Detailed NMR-Based Model for CO on Pt Catalysts in an Electrochemical Environment:Â Shifts, Relaxation, Back-Bonding, and the Fermi-Level Local Density of States. Journal of the American Chemical Society, 2000, 122, 1123-1129.	13.7	111
162	Computation of Through-Space19Fâ^'19F Scalar Couplings via Density Functional Theory. Journal of the American Chemical Society, 2000, 122, 12164-12168.	13.7	50

#	Article	IF	CITATIONS
163	The Chemical Nature of Hydrogen Bonding in Proteins via NMR:ÂJ-Couplings, Chemical Shifts, and AIM Theory. Journal of the American Chemical Society, 2000, 122, 12835-12841.	13.7	422
164	Solid-State NMR, Mössbauer, Crystallographic, and Density Functional Theory Investigation of Feâ°'O2and Feâ°'O2Analogue Metalloporphyrins and Metalloproteinsâ€. Journal of the American Chemical Society, 1999, 121, 3829-3844.	13.7	99
165	Trypanosoma cruzi Contains Major Pyrophosphate Stores, and Its Growth in Vitro and in Vivo Is Blocked by Pyrophosphate Analogs. Journal of Biological Chemistry, 1999, 274, 33609-33615.	3.4	134
166	Determination of order parameters and correlation times in proteins: a comparison between Bayesian, Monte Carlo and simple graphical methods. Journal of Biomolecular NMR, 1999, 13, 133-137.	2.8	8
167	Correlation between the Knight Shift of Chemisorbed CO and the Fermi Level Local Density of States at Clean Platinum Catalyst Surfacesâ€. Journal of the American Chemical Society, 1999, 121, 2996-3003.	13.7	63
168	Solid-State NMR, Crystallographic and Density Functional Theory Investigation of Feâ"CO and Feâ"CO Analogue Metalloporphyrins and Metalloproteinsâ€. Journal of the American Chemical Society, 1999, 121, 3818-3828.	13.7	61
169	Nitrogen-Containing Bisphosphonates as Carbocation Transition State Analogs for Isoprenoid Biosynthesis. Biochemical and Biophysical Research Communications, 1999, 263, 754-758.	2.1	153
170	NMR and Quantum Chemistry of Proteins and Model Systems. ACS Symposium Series, 1999, , 40-62.	0.5	4
171	Carbonyl Complexes of Iron(II), Ruthenium(II), and Osmium(II) 5,10,15,20-Tetraphenylporphyrinates:Â A Comparative Investigation by X-ray Crystallography, Solid-State NMR Spectroscopy, and Density Functional Theory. Journal of the American Chemical Society, 1998, 120, 11323-11334.	13.7	76
172	An Experimental and Density Functional Theoretical Investigation of Iron-57 Mössbauer Quadrupole Splittings in Organometallic and Heme-Model Compounds:À Applications to Carbonmonoxy-Heme Protein Structureâ€. Journal of the American Chemical Society, 1998, 120, 3144-3151.	13.7	85
173	An Experimental and Quantum Chemical Investigation of CO Binding to Heme Proteins and Model Systems: A Unified Model Based on13C,17O, and57Fe Nuclear Magnetic Resonance and57Fe Mössbauer and Infrared Spectroscopies. Journal of the American Chemical Society, 1998, 120, 4784-4797.	13.7	100
174	Iron-57 NMR Chemical Shifts and Mössbauer Quadrupole Splittings in Metalloporphyrins, Ferrocytochromec, and Myoglobins: A Density Functional Theory Investigationâ€. Journal of Physical Chemistry A, 1998, 102, 2342-2350.	2.5	71
175	Assignment and Analysis of Fluorine Nuclear Magnetic Resonance Spectra of 4-Fluorotryptophan Myoglobins and Hemoglobinsâ€. Biochemistry, 1997, 36, 3590-3599.	2.5	26
176	Predicting Chemical Shifts in Proteins:Â Structure Refinement of Valine Residues by Usingab Initioand Empirical Geometry Optimizationsâ€. Journal of the American Chemical Society, 1997, 119, 11941-11950.	13.7	78
177	Density Functional Study of Cobalt-59 Nuclear Magnetic Resonance Chemical Shifts and Shielding Tensor Elements in Co(III) Complexes. Journal of the American Chemical Society, 1997, 119, 8065-8069.	13.7	64
178	Anab InitioQuantum Chemical Investigation of Carbon-13 NMR Shielding Tensors in Glycine, Alanine, Valine, Isoleucine, Serine, and Threonine:Â Comparisons between Helical and Sheet Tensors, and the Effects of χ1on Shieldingâ€. Journal of the American Chemical Society, 1997, 119, 11951-11958.	13.7	109
179	19F Nuclear Magnetic Resonance Chemical Shifts of Fluorine Containing Aliphatic Amino Acids in Proteins: Studies onLactobacillus caseiDihydrofolate Reductase Containing (2S,4S)-5-Fluoroleucine‖. Journal of the American Chemical Society, 1996, 118, 8700-8706.	13.7	74
180	Ab InitioStudies of Amide-15NChemical Shifts in Dipeptides: Applications to Protein NMR Spectroscopyâ€. The Journal of Physical Chemistry, 1996, 100, 16423-16428.	2.9	58

#	Article	IF	CITATIONS
181	Chemical shifts and three-dimensional protein structures. Journal of Biomolecular NMR, 1995, 5, 217-25.	2.8	157
182	1H, 13C and 15N chemical shift referencing in biomolecular NMR. Journal of Biomolecular NMR, 1995, 6, 135-140.	2.8	2,216
183	A Basis Size Dependence Study of Carbon-13 Nuclear Magnetic Resonance Spectroscopic Shielding in Alanyl and Valyl Fragments: Toward Protein Shielding Hypersurfaces. Journal of the American Chemical Society, 1995, 117, 9542-9546.	13.7	32
184	Protein Structure Refinement Using Carbon-13 Nuclear Magnetic Resonance Spectroscopic Chemical Shifts and Quantum Chemistry. Journal of the American Chemical Society, 1995, 117, 8823-8829.	13.7	43
185	Correlation between 15N NMR chemical shifts in proteins and secondary structure. Journal of Biomolecular NMR, 1994, 4, 341-8.	2.8	89
186	Ab Initio Study of the Effects of Torsion Angles on Carbon-13 Nuclear Magnetic Resonance Chemical Shielding in N-Formyl-L-alanine Amide, N-Formyl-L-valine Amide, and Some Simple Model Compounds: Applications to Protein NMR Spectroscopy. Journal of the American Chemical Society, 1994, 116, 5307-5314.	13.7	71
187	Evaluating 19F Chemical Shielding in Fluorobenzenes: Implications for Chemical Shifts in Proteins. Journal of the American Chemical Society, 1994, 116, 7453-7454.	13.7	28
188	Predicting Carbon-13 Nuclear Magnetic Resonance Chemical Shielding Tensors in Zwitterionic L-Threonine and L-Tyrosine via Quantum Chemistry. Journal of the American Chemical Society, 1994, 116, 7784-7786.	13.7	67
189	Fluorine-19 Nuclear Magnetic Resonance Spectroscopic Study of Fluorophenylalanine- and Fluorotryptophan-Labeled Avian Egg White Lysozymes. Biochemistry, 1994, 33, 5238-5245.	2.5	47
190	Chemical Shifts of Carbonyl Carbons in Peptides and Proteins. Journal of the American Chemical Society, 1994, 116, 11485-11488.	13.7	62
191	Computing nuclear magnetic resonance chemical shielding in large systems via multipole shielding polarizabilities. Chemical Physics Letters, 1993, 213, 211-216.	2.6	20
192	Methods for computing nuclear magnetic resonance chemical shielding in large systems. Multiple cluster and charge field approaches. Chemical Physics Letters, 1993, 205, 108-116.	2.6	85
193	Carbon-13 "magic-angle―sample-spinning nuclear magnetic resonance studies of human myelin, and model membrane systems. Magnetic Resonance in Medicine, 1993, 29, 168-178.	3.0	28
194	NMR chemical shifts and structure refinement in proteins. Journal of Biomolecular NMR, 1993, 3, 607-612.	2.8	38
195	Chemical shifts in proteins: an ab initio study of carbon-13 nuclear magnetic resonance chemical shielding in glycine, alanine, and valine residues. Journal of the American Chemical Society, 1993, 115, 9768-9773.	13.7	69
196	Chemical shifts in proteins: a shielding trajectory analysis of the fluorine nuclear magnetic resonance spectrum of the Escherichia coli galactose binding protein using a multipole shielding polarizability-local reaction field-molecular dynamics approach. Journal of the American Chemical Society, 1993, 115, 6851-6862.	13.7	80
197	Correlation of carbon-13 and oxygen-17 chemical shifts and the vibrational frequency of electrically perturbed carbon monoxide: a possible model for distal ligand effects in carbonmonoxyheme proteins. Journal of the American Chemical Society, 1991, 113, 2447-2451.	13.7	116
198	Distal and proximal ligand interactions in heme proteins: correlations between carbon-oxygen and iron-carbon vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in [C17O-] and [13CO]-labeled species. Biochemistry, 1991, 30, 2333-2347.	2.5	132

#	Article	IF	CITATIONS
199	Determination of rotational mobilities of backbone and side-chain carbons of poly(\hat{i}^3 -benzyl) Tj ETQq1 1 0.784314	rgBT /Ov	verlock 10 Tf
	and nuclear Overhauser enhancements. Biochemistry, 1973, 12, 3428-3433.	2.5	75
200	Natural-abundance carbon-13 nuclear magnetic resonance studies in 20-mm sample tubes. Numerous single-carbon resonances of hen egg-white lysozyme. Biochemistry, 1973, 12, 1335-1341.	2.5	100