
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2872271/publications.pdf Version: 2024-02-01

YUN-CALLIU

#	Article	IF	CITATIONS
1	Hypoxia induces adrenomedullin from lung epithelia, stimulating ILC2 inflammation and immunity. Journal of Experimental Medicine, 2022, 219, .	4.2	8
2	Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Research, 2020, 30, 966-979.	5.7	349
3	The deubiquitinase CYLD controls protective immunity against helminth infection by regulation of Treg cell plasticity. Journal of Allergy and Clinical Immunology, 2020, 148, 209-224.e9.	1.5	2
4	The E3 ligase VHL promotes follicular helper T cell differentiation via glycolytic-epigenetic control. Journal of Experimental Medicine, 2019, 216, 1664-1681.	4.2	71
5	Immune regulation by protein ubiquitination: roles of the E3 ligases VHL and Itch. Protein and Cell, 2019, 10, 395-404.	4.8	17
6	E3 Ligase VHL Promotes Group 2 Innate Lymphoid Cell Maturation and Function via Glycolysis Inhibition and Induction of Interleukin-33 Receptor. Immunity, 2018, 48, 258-270.e5.	6.6	76
7	The E3 ligase VHL controls alveolar macrophage function via metabolic–epigenetic regulation. Journal of Experimental Medicine, 2018, 215, 3180-3193.	4.2	28
8	The E3 ligases Itch and WWP2 cooperate to limit TH2 differentiation by enhancing signaling through the TCR. Nature Immunology, 2018, 19, 766-775.	7.0	30
9	Immune Regulation by Ubiquitin Tagging as Checkpoint Code. Current Topics in Microbiology and Immunology, 2017, 410, 215-248.	0.7	3
10	Receptor Protein Tyrosine Phosphatase α–Mediated Enhancement of Rheumatoid Synovial Fibroblast Signaling and Promotion of Arthritis in Mice. Arthritis and Rheumatology, 2016, 68, 359-369.	2.9	24
11	SHARPIN controls regulatory T cells by negatively modulating the T cell antigen receptor complex. Nature Immunology, 2016, 17, 286-296.	7.0	53
12	T follicular helper cells, T follicular regulatory cells and autoimmunity. International Immunology, 2016, 28, 173-179.	1.8	89
13	The E3 ligase Itch in immune regulation and beyond. Immunological Reviews, 2015, 266, 6-26.	2.8	68
14	E3ÂUbiquitin Ligase VHL Regulates Hypoxia-Inducible Factor-1α to Maintain Regulatory T Cell Stability and Suppressive Capacity. Immunity, 2015, 42, 1062-1074.	6.6	175
15	IL-10-producing intestinal macrophages prevent excessive antibacterial innate immunity by limiting IL-23 synthesis. Nature Communications, 2015, 6, 7055.	5.8	103
16	The Ubiquitin System in Immune Regulation. Advances in Immunology, 2014, 124, 17-66.	1.1	65
17	The E3 ubiquitin ligase Itch is required for the differentiation of follicular helper T cells. Nature Immunology, 2014, 15, 657-666.	7.0	101
18	InÂVivo RNA Interference Screens Identify Regulators of Antiviral CD4+ and CD8+ T Cell Differentiation. Immunity, 2014, 41, 325-338.	6.6	95

#	Article	IF	CITATIONS
19	Ubiquitin ligase Cblâ€b acts as a negative regulator in discoidin domain receptor 2 signaling via modulation of its stability. FEBS Letters, 2014, 588, 1509-1514.	1.3	4
20	Neddylation pathway regulates T-cell function by targeting an adaptor protein Shc and a protein kinase Erk signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 624-629.	3.3	61
21	Usp18 deficient mammary epithelial cells create an antitumour environment driven by hypersensitivity to <scp>IFN</scp> â€î» and elevated secretion of Cxcl10. EMBO Molecular Medicine, 2013, 5, 1035-1050.	3.3	83
22	Regulation of T cell function by the ubiquitin-specific protease USP9X via modulating the Carma1-Bcl10-Malt1 complex. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9433-9438.	3.3	44
23	Itch expression by Treg cells controls Th2 inflammatory responses. Journal of Clinical Investigation, 2013, 123, 4923-4934.	3.9	77
24	TSC1 regulates the balance between effector and regulatory T cells. Journal of Clinical Investigation, 2013, 123, 5165-5178.	3.9	120
25	To go or not to go: the "ltchy―effect on the destiny of hematopoietic stem cells. Cell Research, 2011, 21, 1161-1163.	5.7	1
26	Foxp3 positive regulatory T cells: a functional regulation by the E3 ubiquitin ligase Itch. Seminars in Immunopathology, 2010, 32, 149-156.	2.8	10
27	K33-Linked Polyubiquitination of T Cell Receptor-ζ Regulates Proteolysis-Independent T Cell Signaling. Immunity, 2010, 33, 60-70.	6.6	140
28	K33-Linked Polyubiquitination of T Cell Receptor-ζ Regulates Proteolysis-Independent T Cell Signaling. Immunity, 2010, 33, 830.	6.6	0
29	Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. Journal of Experimental Medicine, 2010, 207, 1381-1391.	4.2	251
30	Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. Journal of Cell Biology, 2010, 189, i11-i11.	2.3	0
31	Mechanisms of NKT cell anergy induction involve Cbl-b-promoted monoubiquitination of CARMA1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17847-17851.	3.3	65
32	The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Nature Immunology, 2008, 9, 245-253.	7.0	165
33	A Molecular Dissection of Lymphocyte Unresponsiveness Induced by Sustained Calcium Signalling. Novartis Foundation Symposium, 2008, , 165-179.	1.2	19
34	The E3 ubiquitin ligase Itch regulates Foxp3 expression and airway inflammation via enhancing TIEG1 function. FASEB Journal, 2008, 22, 848.6.	0.2	0
35	The E3 ubiquitin ligase Itch in T cell activation, differentiation, and tolerance. Seminars in Immunology, 2007, 19, 197-205.	2.7	54
36	The E3 Ubiquitin Ligase Itch Couples JNK Activation to TNFα-induced Cell Death by Inducing c-FLIPL Turnover. Cell, 2006, 124, 601-613.	13.5	679

#	Article	IF	CITATIONS
37	Negative Regulation of the E3 Ubiquitin Ligase Itch via Fyn-Mediated Tyrosine Phosphorylation. Molecular Cell, 2006, 21, 135-141.	4.5	119
38	Impaired Activation and Localization of LAT in Anergic T Cells as a Consequence of a Selective Palmitoylation Defect. Immunity, 2006, 24, 513-522.	6.6	108
39	Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1717-1722.	3.3	248
40	Immune Regulation by Ubiquitin Conjugation. , 2006, 584, 207-217.		6
41	Convergence of Itch-induced ubiquitination with MEKK1-JNK signaling in Th2 tolerance and airway inflammation. Journal of Clinical Investigation, 2006, 116, 1117-1126.	3.9	98
42	Immunity by ubiquitylation: a reversible process of modification. Nature Reviews Immunology, 2005, 5, 941-952.	10.6	224
43	The ubiquitin–protein ligase Itch regulates p73 stability. EMBO Journal, 2005, 24, 836-848.	3.5	286
44	Genotoxic Stress Targets Human Chk1 for Degradation by the Ubiquitin-Proteasome Pathway. Molecular Cell, 2005, 19, 607-618.	4.5	259
45	Jun Turnover Is Controlled Through JNK-Dependent Phosphorylation of the E3 Ligase Itch. Science, 2004, 306, 271-275.	6.0	361
46	Differential Regulation of the B Cell Receptor-mediated Signaling by the E3 Ubiquitin Ligase Cbl. Journal of Biological Chemistry, 2004, 279, 43646-43653.	1.6	34
47	Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nature Immunology, 2004, 5, 255-265.	7.0	489
48	Ubiquitin Ligases and the Immune Response. Annual Review of Immunology, 2004, 22, 81-127.	9.5	270
49	Essential Role of the E3 Ubiquitin Ligase Cbl-b in T Cell Anergy Induction. Immunity, 2004, 21, 167-177.	6.6	308
50	ltch E3 Ligase-Mediated Regulation of TGF-β Signaling by Modulating Smad2 Phosphorylation. Molecular Cell, 2004, 15, 825-831.	4.5	111
51	Negative regulation of Rap1 activation by the Cbl E3 ubiquitin ligase. EMBO Reports, 2003, 4, 425-431.	2.0	33
52	Negative Regulation of T Cell Antigen Receptor-mediated Crk-L-C3G Signaling and Cell Adhesion by Cbl-b. Journal of Biological Chemistry, 2003, 278, 23978-23983.	1.6	70
53	The Chaperone Protein 14-3-3 Interacts with 3BP2/SH3BP2 and Regulates Its Adapter Function. Journal of Biological Chemistry, 2003, 278, 7146-7153.	1.6	42
54	The Tight Junction-specific Protein Occludin Is a Functional Target of the E3 Ubiquitin-protein Ligase Itch. Journal of Biological Chemistry, 2002, 277, 10201-10208.	1.6	174

#	Article	IF	CITATIONS
55	Vav-induced activation of the human IFN-Î ³ gene promoter is mediated by upregulation of AP-1 activity. FEBS Letters, 2002, 514, 153-158.	1.3	21
56	Cbl and Cbl-b in T-cell regulation. Trends in Immunology, 2002, 23, 140-143.	2.9	78
57	Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nature Immunology, 2002, 3, 281-287.	7.0	318
58	Regulation of Immune Responses by E3 Ubiquitin-Protein Ligases. , 2001, 5, 161-175.		10
59	Proteolysis-independent regulation of PI3K by Cbl-b–mediated ubiquitination in T cells. Nature Immunology, 2001, 2, 870-875.	7.0	262
60	Soluble c-kit receptor blocks stem cell factor bioactivity in vitro. Leukemia Research, 2001, 25, 413-421.	0.4	38
61	Regulation of Cbl Molecular Interactions by the Co-receptor Molecule CD43 in Human T Cells. Journal of Biological Chemistry, 2001, 276, 729-737.	1.6	36
62	Vav-Rac1-Mediated Activation of the c-Jun N-Terminal Kinase/c-Jun/AP-1 Pathway Plays a Major Role in Stimulation of the Distal NFAT Site in the Interleukin-2 Gene Promoter. Molecular and Cellular Biology, 2001, 21, 3126-3136.	1.1	77
63	Cbl Promotes Ubiquitination of the T Cell Receptor ζ through an Adaptor Function of Zap-70. Journal of Biological Chemistry, 2001, 276, 26004-26011.	1.6	144
64	Cbl-b, a RING-type E3 Ubiquitin Ligase, Targets Phosphatidylinositol 3-Kinase for Ubiquitination in T Cells. Journal of Biological Chemistry, 2001, 276, 4872-4878.	1.6	175
65	Regulation of Protein Kinase CÎ, Function during T Cell Activation by Lck-mediated Tyrosine Phosphorylation. Journal of Biological Chemistry, 2000, 275, 3603-3609.	1.6	104
66	Recognition and Ubiquitination of Notch by Itch, a Hect-type E3 Ubiquitin Ligase. Journal of Biological Chemistry, 2000, 275, 35734-35737.	1.6	302
67	Dual Regulation of T Cell Receptor-mediated Signaling by Oncogenic Cbl Mutant 70Z. Journal of Biological Chemistry, 1999, 274, 4883-4889.	1.6	20
68	Protein Kinase C μ Is Negatively Regulated by 14-3-3 Signal Transduction Proteins. Journal of Biological Chemistry, 1999, 274, 9258-9264.	1.6	95
69	Tyrosine phosphorylation and complex formation of Cbl-b upon T cell receptor stimulation. Oncogene, 1999, 18, 1147-1156.	2.6	72
70	A direct interaction between the adaptor protein Cbl-b and the kinase Zap-70 induces a positive signal in T cells. Current Biology, 1999, 9, 203-210.	1.8	44
71	The Tyrosine Kinase Negative Regulator c-Cbl as a RING-Type, E2-Dependent Ubiquitin-Protein Ligase. Science, 1999, 286, 309-312.	6.0	963
72	lsolation of High-Affinity Peptide Antagonists of 14-3-3 Proteins by Phage Displayâ€. Biochemistry, 1999, 38, 12499-12504.	1.2	279

#	Article	IF	CITATIONS
73	Cbl. Cellular Signalling, 1998, 10, 377-385.	1.7	91
74	Coordinated Regulation of the Tyrosine Phosphorylation of Cbl by Fyn and Syk Tyrosine Kinases. Journal of Biological Chemistry, 1998, 273, 8867-8874.	1.6	107
75	Serine Phosphorylation of Cbl Induced by Phorbol Ester Enhances Its Association with 14-3-3 Proteins in T Cells via a Novel Serine-rich 14-3-3-binding Motif. Journal of Biological Chemistry, 1997, 272, 9979-9985.	1.6	126
76	Ras-dependent, Ca2+-stimulated Activation of Nuclear Factor of Activated T Cells by a Constitutively Active Cbl Mutant in T Cells. Journal of Biological Chemistry, 1997, 272, 168-173.	1.6	57
77	Production of Bioactive Salmon Calcitonin from the Nonendocrine Cell Lines COS-7 and CHO. Peptides, 1997, 18, 439-444.	1.2	10
78	Conversion of inactive glycosylation inhibiting factor to bioactive derivatives by modification of a SH group. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 202-207.	3.3	19
79	Activation-modulated Association of 14–3–3 Proteins with Cbl in T Cells. Journal of Biological Chemistry, 1996, 271, 14591-14595.	1.6	102
80	Association of the "major histocompatibility complex subregion" I-J determinant with bioactive glycosylation-inhibiting factor Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9196-9200.	3.3	14
81	Inhibition of phosphatidylinositol 3-kinase activity by association with 14-3-3 proteins in T cells Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 10142-10146.	3.3	146
82	Thec-kit receptor transduces the stem cell factor-triggered growth signal in murine interleukin-3-dependent cell line. Cytotechnology, 1994, 16, 27-35.	0.7	11
83	Ligand-induced activation of chimeric receptors between the erythropoietin receptor and receptor tyrosine kinases Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 158-162.	3.3	89
84	Requirement of posttranslational modifications for the generation of biologic activity of glycosylation-inhibiting factor Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 11227-11231.	3.3	26
85	Characterization of a Fusion Protein Composed of the Extracellular Domain of c-kit and the Fc Region of Human IgG Expressed in a Baculovirus System. Biochemical and Biophysical Research Communications, 1993, 197, 1094-1102.	1.0	16
86	Processing of a fusion protein by endoprotease in COS-1 cells for secretion of mature peptide by using a chimeric expression vector Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 8957-8961.	3.3	45
87	Molecular cloning and functional expression of a cDNA encoding glycosylation-inhibiting factor Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10056-10060.	3.3	48