Diego Lascano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2872024/publications.pdf

Version: 2024-02-01

713332 687220 26 479 13 21 h-index citations g-index papers 26 26 26 427 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Development and evaluation of novel nanofibers based on mango kernel starch obtained by electrospinning. Polymer Testing, 2022, 106, 107462.	2.3	17
2	Development and Characterization of Polylactide Blends with Improved Toughness by Reactive Extrusion with Lactic Acid Oligomers. Polymers, 2022, 14, 1874.	2.0	4
3	Manufacturing and Characterization of Highly Environmentally Friendly Sandwich Composites from Polylactide Cores and Flax-Polylactide Faces. Polymers, 2021, 13, 342.	2.0	9
4	Manufacturing and Characterization of Hybrid Composites with Basalt and Flax Fabrics and a Partially Bio-based Epoxy Resin. Fibers and Polymers, 2021, 22, 751-763.	1.1	4
5	Kinetic Analysis of the Curing Process of Biobased Epoxy Resin from Epoxidized Linseed Oil by Dynamic Differential Scanning Calorimetry. Polymers, 2021, 13, 1279.	2.0	13
6	Upgrading Recycled Polypropylene from Textile Wastes in Wood Plastic Composites with Short Hemp Fiber. Polymers, 2021, 13, 1248.	2.0	30
7	Improved Performance of Environmentally Friendly Blends of Biobased Polyethylene and Kraft Lignin Compatibilized by Reactive Extrusion with Dicumyl Peroxide. Macromolecular Materials and Engineering, 2021, 306, 2100196.	1.7	14
8	Manufacturing and Characterization of Highâ€Density Polyethylene Composites with Active Fillers from Persimmon Peel Flour with Improved Antioxidant Activity and Hydrophobicity. Macromolecular Materials and Engineering, 2021, 306, 2100430.	1.7	7
9	Manufacturing and Characterization of Environmentally Friendly Wood Plastic Composites Using Pinecone as a Filler into a Bio-Based High-Density Polyethylene Matrix. Polymers, 2021, 13, 4462.	2.0	2
10	Development and Characterization of Environmentally Friendly Insulation Materials for the Building Industry from Olive Pomace Waste. Fibers and Polymers, 2020, 21, 1142-1151.	1.1	2
11	Manufacturing and Characterization of Green Composites with Partially Biobased Epoxy Resin and Flaxseed Flour Wastes. Applied Sciences (Switzerland), 2020, 10, 3688.	1.3	11
12	Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance. Sustainability, 2020, 12, 652.	1.6	23
13	Mechanical Recycling of Partially Bio-Based and Recycled Polyethylene Terephthalate Blends by Reactive Extrusion with Poly(styrene-co-glycidyl methacrylate). Polymers, 2020, 12, 174.	2.0	25
14	Evaluation of Different Compatibilization Strategies to Improve the Performance of Injection-Molded Green Composite Pieces Made of Polylactide Reinforced with Short Flaxseed Fibers. Polymers, 2020, 12, 821.	2.0	38
15	Manufacturing of composite materials with high environmental efficiency using epoxy resin of renewable origin and permeable light cores for vacuum-assisted infusion molding. Ingenius: Revista De Ciencia Y TecnologÃa, 2020, , 62-73.	0.1	3
16	EFFECT OF INFILL PARAMETERS ON MECHANICAL PROPERTIES IN ADDITIVE MANUFACTURING. Dyna (Spain), 2020, 95, 412-417.	0.1	13
17	EDUCATIONAL EXPERIENCE BASED ON INVERSE ENGINEERING TO EXPLAIN THE EMBRITTLEMENT OF MATERIALS. METHOD BASED ON REAL CASE STUDIES. , 2020, , .		0
18	Manufacturing and Characterization of Functionalized Aliphatic Polyester from Poly(lactic acid) with Halloysite Nanotubes. Polymers, 2019, 11, 1314.	2.0	18

#	Article	IF	CITATIONS
19	Functionalization of Partially Bio-Based Poly(Ethylene Terephthalate) by Blending with Fully Bio-Based Poly(Amide) 10,10 and a Glycidyl Methacrylate-Based Compatibilizer. Polymers, 2019, 11, 1331.	2.0	9
20	Optimization of the Curing and Post-Curing Conditions for the Manufacturing of Partially Bio-Based Epoxy Resins with Improved Toughness. Polymers, 2019, 11, 1354.	2.0	38
21	Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites. Materials, 2019, 12, 1627.	1.3	20
22	Kinetic Analysis of the Curing of a Partially Biobased Epoxy Resin Using Dynamic Differential Scanning Calorimetry. Polymers, 2019, 11, 391.	2.0	33
23	Toughened Poly(Lactic Acid)â€"PLA Formulations by Binary Blends with Poly(Butylene) Tj ETQq1 1 0.784314 rgBT	<i>l</i> Oyerlock	10 Tf 50 5
24	Development of Injection-Molded Polylactide Pieces with High Toughness by the Addition of Lactic Acid Oligomer and Characterization of Their Shape Memory Behavior. Polymers, 2019, 11, 2099.	2.0	17
25	Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers, 2019, 11, 1908.	2.0	74
26	Sustainable materials with high insulation capacity obtained from wastes from hemp industry processed by wet-laid. Textile Reseach Journal, 0, , 004051752110460.	1.1	4