Ashutosh Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2871766/publications.pdf

Version: 2024-02-01

43 papers 1,310 citations

257450 24 h-index 35 g-index

46 all docs 46 docs citations

46 times ranked

1574 citing authors

#	Article	IF	CITATIONS
1	Inositol Phosphoryl Transferase, Ipt1, Is a Critical Determinant of Azole Resistance and Virulence Phenotypes in Candida glabrata. Journal of Fungi (Basel, Switzerland), 2022, 8, 651.	3.5	3
2	Sphingolipidomics of drug resistant Candida auris clinical isolates reveal distinct sphingolipid species signatures. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158815.	2.4	12
3	Lipid Structure, Function, and Lipidomic Applications. , 2021, , 441-457.		O
4	Mass Spectrometric Analysis of Bioactive Sphingolipids in Fungi. Methods in Molecular Biology, 2021, 2306, 239-255.	0.9	2
5	Cholesterol and sphingomyelin are critical for Fcî³ receptor–mediated phagocytosis of Cryptococcus neoformans by macrophages. Journal of Biological Chemistry, 2021, 297, 101411.	3.4	12
6	A detailed lipidomic study of human pathogenic fungi <i>Candida auris</i> . FEMS Yeast Research, 2020, 20, .	2.3	8
7	Splenectomy Modulates the Erythrocyte Turnover and Basigin (CD147) Expression in Mice. Indian Journal of Hematology and Blood Transfusion, 2020, 36, 711-718.	0.6	5
8	Nanomaterial-Assisted Mass Spectrometry: An Evolving Cutting-Edge Technique. , 2020, , 453-464.		0
9	Analysis of Sterols by Gas Chromatography–Mass Spectrometry. Springer Protocols, 2020, , 83-101.	0.3	O
10	Background of Membrane Lipids. Springer Protocols, 2020, , 1-11.	0.3	0
11	Sphingolipid biosynthetic pathway is crucial for growth, biofilm formation and membrane integrity of Scedosporium boydii. Future Medicinal Chemistry, 2019, 11, 2905-2917.	2.3	12
12	Lipidomics Approaches: Applied to the Study of Pathogenesis in Candida Species. Progress in Molecular and Subcellular Biology, 2019, 58, 195-215.	1.6	1
13	The Role of Ceramide Synthases in the Pathogenicity of Cryptococcus neoformans. Cell Reports, 2018, 22, 1392-1400.	6.4	46
14	Paraquat treatment modulates integrin associated protein (CD47) and basigin (CD147) expression and mitochondrial potential on erythroid cells in mice. Environmental Toxicology and Pharmacology, 2018, 58, 37-44.	4.0	11
15	Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling. Journal of Biological Chemistry, 2018, 293, 412-432.	3.4	42
16	Analysis of sphingolipids, sterols, and phospholipids in human pathogenic Cryptococcus strains. Journal of Lipid Research, 2017, 58, 2017-2036.	4.2	64
17	The effect of sterol structure upon clathrin-mediated and clathrin-independent endocytosis. Journal of Cell Science, 2017, 130, 2682-2695.	2.0	44
18	Changes in glucosylceramide structure affect virulence and membrane biophysical properties of Cryptococcus neoformans. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2224-2233.	2.6	34

#	Article	IF	Citations
19	Insights into Candida Lipids. , 2017, , 417-428.		О
20	Sphingolipidomics: An Important Mechanistic Tool for Studying Fungal Pathogens. Frontiers in Microbiology, 2016, 7, 501.	3.5	50
21	Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis. PLoS ONE, 2016, 11, e0153853.	2.5	25
22	Pleiotropic effects of the vacuolar ABC transporter MLT1 of Candida albicans on cell function and virulence. Biochemical Journal, 2016, 473, 1537-1552.	3.7	28
23	Functional characterization of the <scp><i>A</i></scp> <i>spergillus nidulans</i> glucosylceramide pathway reveals that LCB î"8â€desaturation and C9â€methylation are relevant to filamentous growth, lipid raft localization and <i>Ps</i>	2.5	34
24	Sphingolipids as targets for treatment of fungal infections. Future Medicinal Chemistry, 2016, 8, 1469-1484.	2.3	74
25	The <i>Aspergillus fumigatus</i> SchA ^{SCH9} kinase modulates SakA ^{HOG1} MAP kinase activity and it is essential for virulence. Molecular Microbiology, 2016, 102, 642-671.	2.5	33
26	Effects of Sterol Structure and Sterol Ability to form Ordered Membrane Domains upon Cellular Endocytosis. Biophysical Journal, 2016, 110, 595a.	0.5	0
27	Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans: potential applications for vaccine development. Frontiers in Microbiology, 2015, 6, 836.	3.5	59
28	Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids. MBio, 2015, 6, e00647.	4.1	124
29	Qualitative and Quantitative Measurements of Sphingolipids by Mass Spectrometry. , 2015, , 313-338.		7
30	An Assessment of Growth Media Enrichment on Lipid Metabolome and the Concurrent Phenotypic Properties of Candida albicans. PLoS ONE, 2014, 9, e113664.	2.5	22
31	Inositol phosphosphingolipid phospholipase C1 regulates plasma membrane ATPase (Pma1) stability in <i>Cryptococcus neoformans</i> . FEBS Letters, 2014, 588, 3932-3938.	2.8	26
32	Curcumin Targets Cell Wall Integrity via Calcineurin-Mediated Signaling in Candida albicans. Antimicrobial Agents and Chemotherapy, 2014, 58, 167-175.	3.2	78
33	Novel role of a family of major facilitator transporters in biofilm development and virulence of <i>Candida albicans</i> . Biochemical Journal, 2014, 460, 223-235.	3.7	62
34	Lipids of Candida albicans and their role in multidrug resistance. Current Genetics, 2013, 59, 243-250.	1.7	30
35	Lipidomics and <i>in Vitro </i> Azole Resistance in <i>Candida albicans </i> OMICS A Journal of Integrative Biology, 2013, 17, 84-93.	2.0	27
36	A key structural domain of the <i>Candida albicans</i> Mdr1 protein. Biochemical Journal, 2012, 445, 313-322.	3.7	29

ASHUTOSH SINGH

#	ARTICLE	IF	CITATIONS
37	<i>In Vitro</i> Effect of Malachite Green on Candida albicans Involves Multiple Pathways and Transcriptional Regulators <i>UPC2</i> and <i>STP2</i> . Antimicrobial Agents and Chemotherapy, 2012, 56, 495-506.	3.2	35
38	Comparative Lipidomics in Clinical Isolates of Candida albicans Reveal Crosstalk between Mitochondria, Cell Wall Integrity and Azole Resistance. PLoS ONE, 2012, 7, e39812.	2.5	52
39	Lipidome analysis reveals antifungal polyphenol curcumin affects membrane lipid homeostasis. Frontiers in Bioscience - Elite, 2012, E4, 1195.	1.8	11
40	Calcineurin Signaling and Membrane Lipid Homeostasis Regulates Iron Mediated MultiDrug Resistance Mechanisms in Candida albicans. PLoS ONE, 2011, 6, e18684.	2.5	62
41	The yeast ABC transporter Pdr18 (ORF <i>YNR070w</i>) controls plasma membrane sterol composition, playing a role in multidrug resistance. Biochemical Journal, 2011, 440, 195-202.	3.7	53
42	Comparative Lipidomics of Azole Sensitive and Resistant Clinical Isolates of Candida albicans Reveals Unexpected Diversity in Molecular Lipid Imprints. PLoS ONE, 2011, 6, e19266.	2.5	40
43	Phospholipidome of <i>Candida </i> Each Species of <i>Candida </i> Has Distinctive Phospholipid Molecular Species. OMICS A Journal of Integrative Biology, 2010, 14, 665-677.	2.0	46