
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2871615/publications.pdf Version: 2024-02-01

ΙΔΝΙ ΥΔΝΙ STAM

#	Article	IF	CITATIONS
1	An experimental setup for dip-coating of thin films for organic solar cells under microgravity conditions. Review of Scientific Instruments, 2021, 92, 015108.	1.3	1
2	10.1063/5.0018223.1., 2021,,.		0
3	Unravelling donor–acceptor film morphology formation for environmentally-friendly OPV ink formulations. Green Chemistry, 2019, 21, 5090-5103.	9.0	31
4	A lattice model approach to the morphology formation from ternary mixtures during the evaporation of one component. European Physical Journal: Special Topics, 2019, 228, 55-68.	2.6	13
5	Using Solubility Parameters to Model More Environmentally Friendly Solvent Blends for Organic Solar Cell Active Layers. Materials, 2019, 12, 3889.	2.9	14
6	Fullerene Aggregation in Thin Films of Polymer Blends for Solar Cell Applications. Materials, 2018, 11, 2068.	2.9	4
7	Engineering Two-Phase and Three-Phase Microstructures from Water-Based Dispersions of Nanoparticles for Eco-Friendly Polymer Solar Cell Applications. Chemistry of Materials, 2018, 30, 6521-6531.	6.7	25
8	Morphology in dip-coated blend films for photovoltaics studied by UV/VIS absorption and fluorescence spectroscopy. , 2018, , .		1
9	Comparing morphology in dip-coated and spin-coated polyfluorene:fullerene films. Proceedings of SPIE, 2016, , .	0.8	5
10	Fluorescence and UV/VIS absorption spectroscopy studies on polymer blend films for photovoltaics. , 2015, , .		5
11	Fluorescence spectroscopy studies on polymer blend solutions and films for photovoltaics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 483, 292-296.	4.7	4
12	Solvent strategies for loading and release in mesoporous silica. Colloids and Interface Science Communications, 2014, 3, 5-8.	4.1	28
13	Synchrotron XRR study of soft nanofilms at the mica–water interface. Soft Matter, 2012, 8, 5055.	2.7	36
14	Tuning the Vertical Phase Separation in Polyfluorene:Fullerene Blend Films by Polymer Functionalization. Chemistry of Materials, 2011, 23, 2295-2302.	6.7	41
15	Transparency and wettability of PVP/PDMSâ€ŀPN synthesized in different organic solvents. Journal of Applied Polymer Science, 2009, 114, 1828-1839.	2.6	15
16	Ibuprofen loading into mesostructured silica using liquid carbon dioxide as a solvent. Green Chemistry, 2009, 11, 662.	9.0	41
17	Vaporâ~'Liquid Equilibrium of Binary Mixtures. 1. Ethanol + 1-Butanol, Ethanol + Octane, 1-Butanol + Octane. Journal of Chemical & Engineering Data, 2006, 51, 1996-2001.	1.9	15
18	Effects on ink setting in flexographic printing: Coating polarity and dot gain. Nordic Pulp and Paper Research Journal, 2006, 21, 569-574.	0.7	11

#	Article	IF	CITATIONS
19	Vaporâ^'Liquid Equilibrium of Binary Mixtures. 2. Ethanol + 2,2,4-Trimethylpentane, 1-Butanol + 2,2,4-Trimethylpentane, and Ethanol +o-Xylene. Journal of Chemical & Engineering Data, 2006, 51, 2002-2008.	1.9	8
20	Latex diffusion at high volume fractions studied by fluorescence microscopy. Journal of Colloid and Interface Science, 2006, 298, 162-171.	9.4	4
21	Alternative Fuel for a Standard Diesel Engine. International Journal of Engine Research, 2006, 7, 51-63.	2.3	21
22	Tuning of the α-Terthiophene Radical Cation Coupling Reaction Using Mixed Micelles with Varying Charge Density. ChemPhysChem, 2005, 6, 2428-2433.	2.1	2
23	Interactions between charged latex colloids and starch polyelectrolytes studied by fluorescence microscopy with image analysis. Nordic Pulp and Paper Research Journal, 2005, 20, 192-199.	0.7	4
24	Higher-Order Cyclodextrin Complexes: The Naphthalene System. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2004, 48, 173-180.	1.6	26
25	Dynamic fluorescence microscopy as a feasible technique for estimating the diffusion coefficients of small particles in the presence of additives. Journal of Colloid and Interface Science, 2003, 267, 500-508.	9.4	3
26	Supramolecular Control of Two-Dimensional Phase Behavior. Chemistry - A European Journal, 2003, 9, 1198-1206.	3.3	68
27	Supramolecular Control of Two-Dimensional Phase Behavior. Chemistry - A European Journal, 2003, 9, 1663-1663.	3.3	2
28	Polysoaps in Aqueous Solutions:Â Intermolecular versus Intramolecular Hydrophobic Aggregation Studied by Fluorescence Spectroscopy. Langmuir, 2001, 17, 2579-2584.	3.5	20
29	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2000, 38, 381-396.	1.6	41
30	Tuning of the Exchange Dynamics of Unimers between Block Copolymer Micelles with Temperature, Cosolvents, and Cosurfactants. Macromolecules, 2000, 33, 6388-6395.	4.8	82
31	α-Terthiophene in Micellar Solutions: Influence of Micellar Size and Charge on the Terthiophene Photophysics and Photochemical Reactivity. Journal of Physical Chemistry B, 1999, 103, 5160-5166.	2.6	9
32	Identification and Characterization of Aggregates Formed by a Partly Neutralized Isophthalic Acid Derivative in Aqueous Solution. Langmuir, 1999, 15, 3374-3380.	3.5	2
33	Electron-Transfer Reactions in SDS Micelles: Reactivity of Pyrene and Tris(2,2â€~-bipyridyl)ruthenium(II) Excited States Investigated by Time-Resolved Luminescence Quenching. Langmuir, 1999, 15, 6201-6207.	3.5	17
34	α-Terthiophene in non-ionic Triton X-100 micelles: biphotonic creation of its radical cation. Chemical Physics Letters, 1998, 286, 452-456.	2.6	4
35	Dynamics of Poly((dimethylamino)alkyl methacrylate-block-sodium methacrylate) Micelles. Influence of Hydrophobicity and Molecular Architecture on the Exchange Rate of Copolymer Molecules. Macromolecules, 1998, 31, 681-689.	4.8	106
36	Transmission and Confocal Fluorescence Microscopy and Time-Resolved Fluorescence Spectroscopy Combined with a Laser Trap:  Investigation of Optically Trapped Block Copolymer Micelles. Journal of Physical Chemistry B, 1998, 102, 8440-8451.	2.6	23

#	Article	IF	CITATIONS
37	Micellar Aggregation Numbers - A Fluorescence Study. Journal of Chemical Education, 1998, 75, 93.	2.3	78
38	Are Aqueous Sodium Dodecyl Sulfate Micelles in the Presence of Added Salt Polydisperse? A Time-Resolved Fluorescence Quenching Study with Global Analysis. Langmuir, 1997, 13, 1957-1963.	3.5	23
39	Exchange of Polymer Molecules between Block Copolymer Micelles Studied by Emission Spectroscopy. A Method for the Quantification of Unimer Exchange Rates. Macromolecules, 1997, 30, 4078-4083.	4.8	75
40	Intramolecular Excited-State Processes of a Halato-Telechelic Polymer, Evaluated by Global Compartmental Analysis of the Fluorescence Decay Surface with the Use of Model Compounds. Macromolecules, 1997, 30, 5582-5590.	4.8	3
41	Observation of α-terthiophene excited dimer fluorescence in aqueous solutions of γ-cyclodextrin. Chemical Physics Letters, 1997, 277, 44-50.	2.6	26
42	On the use of dynamic fluorescence measurements to determine equilibrium and kinetic constants. The inclusion of pyrene in β-cyclodextrin cavities. Chemical Physics Letters, 1996, 249, 46-52.	2.6	22
43	The emission at 669 nm of metal free phthalocyanine in toluene and 1-bromonaphthalene solutions. Chemical Physics Letters, 1996, 253, 397-402.	2.6	6
44	2-Naphthol Complexation by β-Cyclodextrin: Influence of Added Short Linear Alcohols. The Journal of Physical Chemistry, 1996, 100, 19959-19966.	2.9	53
45	Bimolecular Processes of α-Terthiophene in a β-Cyclodextrin Environment: An Exploratory Study. The Journal of Physical Chemistry, 1996, 100, 2129-2135.	2.9	31
46	Excited-state probing of associative and covalent macromolecules. Pure and Applied Chemistry, 1995, 67, 157-165.	1.9	2
47	Emission of a Bichromophoric Molecule in the Presence of an Added Quencher. Study of the Time-Resolved Fluorescence by Global Compartmental Analysis with and without the Use of a Model Compound. The Journal of Physical Chemistry, 1995, 99, 9386-9396.	2.9	8
48	Global Compartmental Analysis of the Fluorescence Decay Surface of the Halato Telechelic Polymer (N,N-Dimethyl-N-[3-(1-pyrenyl)propyl]ammonio)trifluoromethanesulfonate-End-Capped Poly(tetrahydrofuran). Macromolecules, 1995, 28, 3380-3386.	4.8	6
49	Intermicellar Mobility of Probe and Quencher in Reverse Micelles Studied by Fluorescence Quenching. The Journal of Physical Chemistry, 1995, 99, 14407-14413.	2.9	15
50	On the interpretation of excited-state decay data for the determination of the equilibrium constants in compartmentalized systems. Journal of the Chemical Society Chemical Communications, 1995, , 2433.	2.0	4
51	The role of polymer flexibility on the interaction with surfactant micelles: poly(vinyl alcohol) and sodium dodecyl sulphate aqueous micelle interactions studied by dynamic fluorescence quenching. Canadian Journal of Chemistry, 1995, 73, 1765-1772.	1.1	21
52	Luminescence spectroscopy and microdomains. , 1994, , 415-430.		0
53	Non-spherical micelles in the sodium dodecylsulfate–brine system. A fluorescence quenching and nuclear magnetic resonance study. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 1759-1764.	1.7	16
54	Change in the micellar aggregation number or in the size distribution? A dynamic fluorescence quenching study of aqueous cetyltrimethylammonium chloride. Langmuir, 1993, 9, 2289-2296.	3.5	33

#	Article	IF	CITATIONS
55	Interaction between Sodium Dodecyl Sulfate and Poly(ethylene oxide) in Aqueous Systems. ACS Symposium Series, 1993, , 194-215.	0.5	3
56	Aggregation of alkyltrimethylammonium surfactants in aqueous poly(styrenesulfonate) solutions. Langmuir, 1992, 8, 2405-2412.	3.5	192
57	Aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in the presence of sodium dodecyl sulfate in aqueous solution. The Journal of Physical Chemistry, 1991, 95, 5677-5684.	2.9	185
58	Time-resolved fluorescence and self-diffusion studies in systems of a cationic surfactant and an	2.9	89
59	Static and dynamic properties of nonionic amphiphile micelles: Triton X-100 in aqueous solution. The Journal of Physical Chemistry, 1989, 93, 2512-2519.	2.9	114
60	Fluorescence quenching dynamics in rodlike micelles. The Journal of Physical Chemistry, 1988, 92, 4479-4483.	2.9	53
61	The protolysis of singlet excited beta-naphthol: A two-day laboratory experiment to introduce photophysics. Journal of Chemical Education, 1986, 63, 181.	2.3	18
62	Structure and transport in the microemulsion phase of the system Triton X-100-toluene-water. Langmuir, 1986, 2, 432-438.	3.5	52
63	Fluorescence decay kinetics in monodisperse confinements with exchange of probes and quenchers. The Journal of Physical Chemistry, 1986, 90, 4431-4437.	2.9	74
64	A ground-state complex between methyl viologen and the fluorescent whitening agent 4,4′-bis(2-sulfostyryl)-biphenyl disodium salt: a fluorescence spectroscopy study. Canadian Journal of Chemistry, 0, , 1-7.	1.1	1
65	Using Solubility Parameters to Model More Environmentally Friendly Solvent Blends for Organic Solar Cell Active LayersDepartment of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden. , 0, , .		0
66	Donor-acceptor polymer complex formation in solution behind highly efficient all-polymer solar cells ?. , 0, , .		0