Antonio MarÃ-

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2870998/publications.pdf Version: 2024-02-01

ΑΝΤΟΝΙΟ ΜΑΡÃ

#	Article	IF	CITATIONS
1	Theoretical prediction of the shear strength of reinforced concrete slabs under concentrated loads close to linear supports. Structure and Infrastructure Engineering, 2023, 19, 890-903.	3.7	2
2	Modeling serviceability performance and ultimate capacity of corroded reinforced and prestressed concrete structures. Structural Concrete, 2022, 23, 6-15.	3.1	5
3	Punchingâ€shear strength of reinforced concrete slabs subjected to unidirectional inâ€plane tensile forces. Structural Concrete, 2021, 22, 1223-1238.	3.1	2
4	Theoretical prediction of the punching shear strength of concrete flat slabs under in-plane tensile forces. Engineering Structures, 2021, 229, 111632.	5.3	5
5	Extension of the ζ â€method for calculating deflections of twoâ€way slabs based on linear elastic finite element analysis. Structural Concrete, 2021, 22, 1652-1670.	3.1	1
6	Assessment of the existing models to evaluate the shear strength contribution of externally bonded frp shear reinforcements. Composite Structures, 2021, 266, 113641.	5.8	12
7	Mechanical model for the shear strength prediction of corrosion-damaged reinforced concrete slender and non slender beams. Engineering Structures, 2021, 247, 113163.	5.3	10
8	Shear fatigue strength of reinforced concrete members without transverse reinforcement according to the compression chord capacity model. Engineering Structures, 2020, 211, 110495.	5.3	7
9	Influence of the flanges width and thickness on the shear strength of reinforced concrete beams with T-shaped cross section. Engineering Structures, 2019, 188, 506-518.	5.3	20
10	Performance-based slenderness limits for deformations and crack control of reinforced concrete flexural members. Engineering Structures, 2019, 187, 267-279.	5.3	9
11	A punching shear mechanical model for reinforced concrete flat slabs with and without shear reinforcement. Engineering Structures, 2018, 166, 413-426.	5.3	36
12	Analysis of shear resisting actions by means of optimization of strut and tie models taking into account crack patterns. Hormigon Y Acero, 2018, 69, 197-206.	0.2	6
13	Ultimate Capacity of Corroded Statically Indeterminate Reinforced Concrete Members. International Journal of Concrete Structures and Materials, 2018, 12, .	3.2	15
14	Assessment of the Existing Formulations to Evaluate Shear-Punching Strength in RC Slabs with FRP Bars Without Transverse Reinforcement. , 2018, , 778-785.		4
15	Analytical modeling of reinforced concrete columns subjected to bidirectional shear. Engineering Structures, 2017, 138, 458-472.	5.3	10
16	Influence of time-dependent restrained strains in the shear response of RC frames. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	1
17	Damage Investigation of a Tunnel Subjected to an Unplanned Surface Load Through Non-Linear Analysis. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2017, 27, 422-428.	0.8	4
18	Mechanical model to evaluate steel reinforcement corrosion effects on Ϊƒ – ε and fatigue curves. Experimental calibration and validation. Engineering Structures, 2016, 118, 320-333.	5.3	58

#	Article	IF	CITATIONS
19	Shear Design and Assessment of Reinforced and Prestressed Concrete Beams Based on a Mechanical Model. Journal of Structural Engineering, 2016, 142, .	3.4	36
20	The compression chord capacity model for the shear design and assessment of reinforced and prestressed concrete beams. Structural Concrete, 2016, 17, 1017-1032.	3.1	61
21	3D FEM model development from 3D optical measurement technique applied to corroded steel bars. Construction and Building Materials, 2016, 124, 519-532.	7.2	48
22	Structural effects of steel reinforcement corrosion on statically indeterminate reinforced concrete members. Materials and Structures/Materiaux Et Constructions, 2016, 49, 4959-4973.	3.1	40
23	Analysis of FRP Shear Strengthening Solutions for Reinforced Concrete Beams Considering Debonding Failure. Journal of Composites for Construction, 2016, 20, .	3.2	9
24	Shear strengthening of reinforced concrete beams by means of vertical prestressed reinforcement. Structure and Infrastructure Engineering, 2016, 12, 394-410.	3.7	17
25	Efficient 1D model for blind assessment of existing bridges: simulation of a full-scale loading test and comparison with higher order continuum models. Structure and Infrastructure Engineering, 2015, 11, 1383-1397.	3.7	13
26	Corrosion effects on the mechanical properties of reinforcing steel bars. Fatigue and σ–ε behavior. Construction and Building Materials, 2015, 101, 772-783.	7.2	146
27	Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams. Structure and Infrastructure Engineering, 2015, 11, 1399-1419.	3.7	85
28	Shear design of reinforced concrete beams with FRP longitudinal and transverse reinforcement. Composites Part B: Engineering, 2015, 74, 104-122.	12.0	51
29	Predicting the shear–flexural strength of slender reinforced concrete T and I shaped beams. Engineering Structures, 2015, 101, 386-398.	5.3	56
30	Influence of the longitudinal reinforcement on the shear strength of one-way concrete slabs. Materials and Structures/Materiaux Et Constructions, 2015, 48, 2597-2612.	3.1	11
31	Influencia del contenido de finos del hormigón en la respuesta estructural a flexión y cortante de vigas de hormigón armado. Informes De La Construccion, 2015, 67, e097.	0.3	1
32	Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected to point or distributed loads. Frontiers of Structural and Civil Engineering, 2014, 8, 337-353.	2.9	40
33	Nonlinear analysis of RC beams using a hybrid shear-flexural fibre beam model. Engineering Computations, 2014, 31, 1444-1483.	1.4	19
34	Assessment of prestressed concrete bridge girders with low shear reinforcement by means of a non-linear filament frame model. Structure and Infrastructure Engineering, 2014, 10, 1531-1546.	3.7	2
35	Un modelo unificado de resistencia a flexión y cortante de vigas esbeltas de hormigón armado bajo cargas puntuales y repartidas. Hormigon Y Acero, 2014, 65, 247-265.	0.2	5
36	Shear design of FRP reinforced concrete beams without transverse reinforcement. Composites Part B: Engineering, 2014, 57, 228-241.	12.0	66

#	Article	IF	CITATIONS
37	Thermo-mechanical simulation of the ConCrack Benchmark RL1 test with a filament beam model. Engineering Structures, 2014, 73, 143-159.	5.3	2
38	Effect of variations in thermal-curing cycle on the cracking risk of precast segmental tunnel lining. Construction and Building Materials, 2013, 49, 201-213.	7.2	10
39	Design for SLS according to <i>fib</i> Model Code 2010. Structural Concrete, 2013, 14, 99-123.	3.1	55
40	Long-term bond stresses and debonding failure of FRP-strengthened RC cracked members. Composites Part B: Engineering, 2013, 52, 30-39.	12.0	8
41	Lateral behavior of concrete under uniaxial compressive cyclic loading. Materials and Structures/Materiaux Et Constructions, 2013, 46, 709-724.	3.1	45
42	Simplified method for the calculation of long-term deflections in FRP-strengthened reinforced concrete beams. Composites Part B: Engineering, 2013, 45, 1368-1376.	12.0	14
43	Numerical simulation of shear-strengthened RC beams. Engineering Structures, 2013, 46, 359-374.	5.3	26
44	Numerical Analysis of Shear Critical RC Beams Strengthened in Shear with FRP Sheets. Journal of Composites for Construction, 2013, 17, .	3.2	15
45	Dimensionamiento del refuerzo a flexión con laminados de polímeros reforzados con fibras (FRP) evitando su desprendimiento prematuro. Informes De La Construccion, 2013, 65, 519-531.	0.3	3
46	Predicting the Response of FRP-Strengthened Reinforced-Concrete Flexural Members with Nonlinear Evolutive Analysis Models. Journal of Composites for Construction, 2011, 15, 799-809.	3.2	9
47	Laminate debonding process of FRP-strengthened beams. Structure and Infrastructure Engineering, 2011, 7, 131-146.	3.7	7
48	Efecto del enrollado y enderezado en las propiedades mecánicas de barras de acero de diámetro medio y grande fabricadas en rollo. Materiales De Construccion, 2011, 61, 559-581.	0.7	5
49	Long-term deflections in cracked reinforced concrete flexural members. Engineering Structures, 2010, 32, 829-842.	5.3	56
50	A frame element model for the analysis of reinforced concrete structures under shear and bending. Engineering Structures, 2010, 32, 3936-3954.	5.3	52
51	Estudio del comportamiento del hormigón armado ante esfuerzos normales y tangentes mediante modelos seccionales de interacción completa. Informes De La Construccion, 2010, 62, 65-77.	0.3	2
52	Design Proposal to Avoid Peeling Failure in FRP-Strengthened Reinforced Concrete Beams. Journal of Composites for Construction, 2009, 13, 384-393.	3.2	11
53	Interface Behavior in Fiber-Reinforced Polymer-Strengthened Beams Subjected to Transverse Loads: Maximum Transferred Force. Journal of Composites for Construction, 2009, 13, 35-44.	3.2	8
54	Peeling failure in beams strengthened by plate bonding. A design proposal. Structural Concrete, 2009, 10, 1-63.	3.1	2

#	Article	IF	CITATIONS
55	Long-term response of concrete-encased composite columns. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2007, 160, 273-285.	0.8	4
56	Multiaxial-coupled analysis of RC cross-sections subjected to combined forces. Engineering Structures, 2007, 29, 1722-1738.	5.3	43
57	Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cement and Concrete Research, 2007, 37, 735-742.	11.0	1,223
58	Nonlinear analysis of reinforced concrete cross-sections exposed to fire. Fire Safety Journal, 2007, 42, 139-149.	3.1	82
59	Recycled aggregate concrete as structural material. Materials and Structures/Materiaux Et Constructions, 2007, 40, 529-541.	3.1	329
60	Shear behaviour of full-scale prestressed i-beams made with self compacting concrete. Materials and Structures/Materiaux Et Constructions, 2007, 41, 131-141.	3.1	31
61	Shear-Bending-Torsion Interaction in Structural Concrete Members: A Nonlinear Coupled Sectional Approach. Archives of Computational Methods in Engineering, 2007, 14, 249-278.	10.2	39
62	Shear design of prestressed and reinforced concrete beams. Magazine of Concrete Research, 2006, 58, 713-722.	2.0	8
63	Coupled model for the nonlinear analysis of sections made of anisotropic materials, subjected to general 3D loading. Part 2: Implementation and validation. Computers and Structures, 2006, 84, 2264-2276.	4.4	18
64	Coupled model for the non-linear analysis of anisotropic sections subjected to general 3D loading. Part 1: Theoretical formulation. Computers and Structures, 2006, 84, 2254-2263.	4.4	50
65	Microstructure analysis of hardened recycled aggregate concrete. Magazine of Concrete Research, 2006, 58, 683-690.	2.0	181
66	Experimental study on high-strength concrete beams failing in shear. Engineering Structures, 2005, 27, 1519-1527.	5.3	110
67	Strength Capacity of Masonry Wall Structures by the Equivalent Frame Method. Journal of Structural Engineering, 2005, 131, 1601-1610.	3.4	87
68	Lower Slenderness Limits for Rectangular Reinforced Concrete Columns. Journal of Structural Engineering, 2005, 131, 85-95.	3.4	26
69	Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part I: beams without stirrups. Engineering Structures, 2004, 26, 917-926.	5.3	113
70	Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part II: beams with stirrups. Engineering Structures, 2004, 26, 927-936.	5.3	101
71	Effects of construction process and slab prestressing on the serviceability behaviour of composite bridges. Journal of Constructional Steel Research, 2003, 59, 135-163.	3.9	30
72	Preliminary Design of Prestressed Concrete Stress Ribbon Bridge. Journal of Bridge Engineering, 2001, 6, 234-242.	2.9	13

#	Article	IF	CITATIONS
73	Long-Term Behavior of Continuous Precast Concrete Girder Bridge Model. Journal of Bridge Engineering, 2000, 5, 22-30.	2.9	21
74	Nonlinear geometric and material analysis of prestressed concrete general shell structures. Computers and Structures, 1993, 46, 917-929.	4.4	16
75	Numerical treatment of prestressing tendons in the nonlinear analysis of prestressed concrete structures. Computers and Structures, 1993, 46, 905-916.	4.4	23
76	Experimental investigation of the shear strength of oneâ€way reinforced concrete (RC) slabs subjected to concrete (RC) slabs subjected to concentrated loads and inâ€plane transverse axial tension. Structural Concrete, 0, , .	3.1	1