List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2870967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cyclooxygenase-2 deficiency attenuates lipopolysaccharide-induced inflammation, apoptosis, and acute lung injury in adult mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 322, R126-R135.	0.9	5
2	Mitogen-Activated Protein Kinase Phosphatase-1 Controls PD-L1 Expression by Regulating Type I Interferon during Systemic Escherichia coli Infection. Journal of Biological Chemistry, 2022, , 101938.	1.6	2
3	Hypoxic pulmonary endothelial cells release epidermal growth factor leading to vascular smooth muscle cell arginaseâ€2 expression and proliferation. Physiological Reports, 2022, 10, .	0.7	4
4	Knockout of MAPK Phosphatase-1 Exaggerates Type I IFN Response during Systemic Escherichia coli Infection. Journal of Immunology, 2021, 206, 2966-2979.	0.4	6
5	Differential effects of the Src family tyrosine kinases Yes and Fyn on lipopolysaccharide-induced lung injury in ice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L392-L403.	1.3	1
6	MKP-1 modulates ubiquitination/phosphorylation of TLR signaling. Life Science Alliance, 2021, 4, e202101137.	1.3	5
7	Dual-specificity phosphatase (DUSP) genetic variants predict pulmonary hypertension in patients with bronchopulmonary dysplasia. Pediatric Research, 2020, 87, 81-87.	1.1	8
8	MAP kinase phosphatase-1, a gatekeeper of the acute innate immune response. Life Sciences, 2020, 241, 117157.	2.0	24
9	Nitric oxide activates AMPK by modulating PDE3A in human pulmonary artery smooth muscle cells. Physiological Reports, 2020, 8, e14559.	0.7	7
10	MKP-1 Modulates Mitochondrial Transcription Factors, Oxidative Phosphorylation, and Glycolysis. ImmunoHorizons, 2020, 4, 245-258.	0.8	11
11	Mechanisms of Tollâ€like Receptor (TLR) 4 Mediated Proâ€inflammatory Cytokine Production in Human Pulmonary Microvascular Endothelial Cells. FASEB Journal, 2020, 34, 1-1.	0.2	0
12	Hyperoxia results in HMGB1 production and subsequent inflammatory signaling in human pulmonary microvascular endothelial cells. FASEB Journal, 2020, 34, 1-1.	0.2	0
13	Glutathione Reductase Promotes Fungal Clearance and Suppresses Inflammation during Systemic <i>Candida albicans</i> Infection in Mice. Journal of Immunology, 2019, 203, 2239-2251.	0.4	16
14	Deficiency of cationic amino acid transporter-2 protects mice from hyperoxia-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L598-L607.	1.3	6
15	Isoformâ€ s pecific Pde3 knockout mice spontaneously develop pulmonary hypertension. FASEB Journal, 2019, 33, 550.12.	0.2	0
16	Deficiency of the Arginase 2 Gene Protects Neonatal Mice from Hyperoxiaâ€Induced Lung Injury. FASEB Journal, 2019, 33, 846.4.	0.2	0
17	Cell Typeâ€Specific Differential Effects of Nitric Oxide on PDE3 Expression in Pulmonary Vasculature. FASEB Journal, 2019, 33,	0.2	0
18	Tollâ€like receptor 4 antagonist protects neonatal mice from hyperoxiaâ€induced alveolar simplification. FASEB Journal, 2019, 33, 846.5.	0.2	1

#	Article	IF	CITATIONS
19	Hypoxic Pulmonary Endothelial Cells Release Epidermal Growth Factor which Results in Vascular Smooth Muscle Cell Arginase 2 Expression and Proliferation. FASEB Journal, 2019, 33, 845.12.	0.2	1
20	Knockdown of eukaryotic translation initiation factor 3 subunit D (eIF3D) inhibits proliferation of acute myeloid leukemia cells. Molecular and Cellular Biochemistry, 2018, 438, 191-198.	1.4	8
21	Dysregulation of Lipid Metabolism in Mkp-1 Deficient Mice during Gram-Negative Sepsis. International Journal of Molecular Sciences, 2018, 19, 3904.	1.8	21
22	Hypoxic-induction of arginase II requires EGF-mediated EGFR activation in human pulmonary microvascular endothelial cells. Physiological Reports, 2018, 6, e13693.	0.7	6
23	Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. ELife, 2018, 7, .	2.8	116
24	Arginase II Regulates NOâ€mediated Human Pulmonary Microvascular Endothelial Cell Migration. FASEB Journal, 2018, 32, 917.3.	0.2	0
25	Dual Specificity Phosphatase (DUSP) Genetic Variants are Associated with Pulmonary Hypertension in Patients with Bronchopulmonary Dysplasia. FASEB Journal, 2018, 32, 892.13.	0.2	1
26	MKP-1 negatively regulates LPS-mediated IL-1β production through p38 activation and HIF-1α expression. Cellular Signalling, 2017, 34, 1-10.	1.7	43
27	Hypoxic proliferation requires EGFR-mediated ERK activation in human pulmonary microvascular endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L649-L656.	1.3	10
28	Hypoxiaâ€induced proliferation of HeLa cells depends on epidermal growth factor receptorâ€mediated arginase <scp>II</scp> induction. Physiological Reports, 2017, 5, e13175.	0.7	9
29	The dataset describes: HIF-1 α expression and LPS mediated cytokine production in MKP-1 deficient bone marrow derived murine macrophages. Data in Brief, 2017, 14, 56-61.	0.5	6
30	Immunostimulated Arginase II Expression in Intestinal Epithelial Cells Reduces Nitric Oxide Production and Apoptosis. Frontiers in Cell and Developmental Biology, 2017, 5, 15.	1.8	22
31	The Src family tyrosine kinases src and yes have differential effects on inflammation-induced apoptosis in human pulmonary microvascular endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L880-L888.	1.3	13
32	KatG and KatE confer Acinetobacter resistance to hydrogen peroxide but sensitize bacteria to killing by phagocytic respiratory burst. Life Sciences, 2016, 148, 31-40.	2.0	63
33	An arginase-1 SNP that protects against the development of pulmonary hypertension in bronchopulmonary dysplasia enhances NO-mediated apoptosis in lymphocytes. Physiological Reports, 2016, 4, e13041.	0.7	14
34	Mitogen-activated protein kinase phosphatase-1 prevents lipopolysaccharide-induced apoptosis in immature rat intestinal epithelial cells. Pediatric Research, 2015, 78, 128-136.	1.1	14
35	Extracellular Signal-regulated Kinase Mediates Expression of Arginase II but Not Inducible Nitric-oxide Synthase in Lipopolysaccharide-stimulated Macrophages. Journal of Biological Chemistry, 2015, 290, 2099-2111.	1.6	32
36	The Src Family Tyrosine Kinases yes and src Have Divergent Effects on Cytokineâ€Induced Apoptosis in Pulmonary Endothelial Cells Through Divergent Downstream Effects on PI3K and ERK Pathways. FASEB Journal, 2015, 29, 661.4.	0.2	0

#	Article	IF	CITATIONS
37	Hypoxicâ€Induction of Arginase II is Associated with EGFR Activation and EGF Production. FASEB Journal, 2015, 29, 661.3.	0.2	0
38	Cytokineâ€Induced Arginase Expression in Intestinal Epithelial Cells Reduce Nitric Oxide Production and Apoptosis. FASEB Journal, 2015, 29, 854.9.	0.2	0
39	Mice Deficient in the Src Family Tyrosine Kinase yes are Protected from Hyperoxiaâ€Induced Lung Injury. FASEB Journal, 2015, 29, 1017.3.	0.2	Ο
40	Post-translational Regulation of Mitogen-activated Protein Kinase Phosphatase (MKP)-1 and MKP-2 in Macrophages Following Lipopolysaccharide Stimulation. Journal of Biological Chemistry, 2014, 289, 28753-28764.	1.6	15
41	The Src family tyrosine kinase, fyn, is a negative regulator of inflammationâ€induced apoptosis in the lung (1176.6). FASEB Journal, 2014, 28, 1176.6.	0.2	1
42	Screening Bicyclic Peptide Libraries for Protein–Protein Interaction Inhibitors: Discovery of a Tumor Necrosis Factor-α Antagonist. Journal of the American Chemical Society, 2013, 135, 11990-11995.	6.6	121
43	Glutathione reductase is essential for host defense against bacterial infection. Free Radical Biology and Medicine, 2013, 61, 320-332.	1.3	43
44	Rapamycin Induces Mitogen-activated Protein (MAP) Kinase Phosphatase-1 (MKP-1) Expression through Activation of Protein Kinase B and Mitogen-activated Protein Kinase Kinase Pathways. Journal of Biological Chemistry, 2013, 288, 33966-33977.	1.6	47
45	Chronic hypoxia decreases arterial and venous compliance in isolated perfused rat lungs: an effect that is reversed by exogenous <scp>l</scp> -arginine. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H195-H205.	1.5	9
46	HIFâ€2α regulates hypoxiaâ€induced arginase II expression through EGFR. FASEB Journal, 2013, 27, 724.14.	0.2	0
47	ERK MAP Kinases Are Critical for the Expression of MKPâ€1 and MKPâ€2 in Macrophages Following LPS Stimulation. FASEB Journal, 2013, 27, 831.20.	0.2	0
48	Knockout ofMkp-1exacerbates colitis inll-10-deficient mice. American Journal of Physiology - Renal Physiology, 2012, 302, G1322-G1335.	1.6	20
49	Mitogen-activated Protein Kinase Phosphatase (Mkp)-1 Protects Mice against Acetaminophen-induced Hepatic Injury. Toxicologic Pathology, 2012, 40, 1095-1105.	0.9	43
50	Mitogen-activated protein kinase phosphatase-1 inhibits myocardial TNF-Â expression and improves cardiac function during endotoxemia. Cardiovascular Research, 2012, 93, 471-479.	1.8	32
51	Mitogen-activated protein kinase phosphatase (MKP)-1 in immunology, physiology, and disease. Life Sciences, 2012, 90, 237-248.	2.0	109
52	Glutathione Reductase Facilitates Host Defense by Sustaining Phagocytic Oxidative Burst and Promoting the Development of Neutrophil Extracellular Traps. Journal of Immunology, 2012, 188, 2316-2327.	0.4	65
53	Vitamin D Inhibits Monocyte/Macrophage Proinflammatory Cytokine Production by Targeting MAPK Phosphatase-1. Journal of Immunology, 2012, 188, 2127-2135.	0.4	674
54	MAPK Signaling Drives Inflammation in LPS-Stimulated Cardiomyocytes: The Route of Crosstalk to G-Protein-Coupled Receptors. PLoS ONE, 2012, 7, e50071.	1.1	55

#	Article	IF	CITATIONS
55	Glucocorticoid receptor dimerization induces MKP1 to protect against TNF-induced inflammation. Journal of Clinical Investigation, 2012, 122, 2130-2140.	3.9	123
56	MKP1 inhibits myocardial TNFâ€alpha expression and improves cardiac function in endotoxemia. FASEB Journal, 2012, 26, lb665.	0.2	0
57	Dysregulation of p38 and MKP-1 in Response to NOD1/TLR4 Stimulation in Sarcoid Bronchoalveolar Cells. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 500-510.	2.5	58
58	Nitric oxide suppression of cellular proliferation depends on cationic amino acid transporter activity in cytokine-stimulated pulmonary endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L596-L604.	1.3	10
59	Lâ€arginine uptake is necessary for lipopolysaccharide/tumor necrosis factorâ€Î±â€induced apoptotic cell death in pulmonary endothelial cells. FASEB Journal, 2011, 25, .	0.2	0
60	Thioredoxin-interacting protein inhibits hypoxia-inducible factor transcriptional activity. Free Radical Biology and Medicine, 2010, 49, 1361-1367.	1.3	40
61	Interleukin-23 production in dendritic cells is negatively regulated by protein phosphatase 2A. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8340-8345.	3.3	29
62	Lack of Mitogen-Activated Protein Kinase Phosphatase-1 Protects ApoE-Null Mice Against Atherosclerosis. Circulation Research, 2010, 106, 902-910.	2.0	40
63	Mice deficient in <i>Mkp-1</i> develop more severe pulmonary hypertension and greater lung protein levels of arginase in response to chronic hypoxia. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1518-H1528.	1.5	43
64	Aire regulates the expression of differentiation-associated genes and self-renewal of embryonic stem cells. Biochemical and Biophysical Research Communications, 2010, 394, 418-423.	1.0	22
65	Global Expression of Cell Surface Proteins in Embryonic Stem Cells. PLoS ONE, 2010, 5, e15795.	1.1	33
66	Increased Inflammation, Impaired Bacterial Clearance, and Metabolic Disruption after Gram-Negative Sepsis in <i>Mkp-1</i> -Deficient Mice. Journal of Immunology, 2009, 183, 7411-7419.	0.4	91
67	Mitogen-activated protein kinase phosphatase-1 and septic shock. Journal of Organ Dysfunction, 2009, 5, 66-78.	0.3	3
68	Inducible Nitric-oxide Synthase Expression Is Regulated by Mitogen-activated Protein Kinase Phosphatase-1. Journal of Biological Chemistry, 2009, 284, 27123-27134.	1.6	58
69	The function of MAP kinase phosphataseâ€1 in Gramâ€negative sepsis. FASEB Journal, 2009, 23, .	0.2	0
70	MAP kinase phosphatase-1, a critical negative regulator of the innate immune response. International Journal of Clinical and Experimental Medicine, 2009, 2, 48-67.	1.3	41
71	Triptolide induces anti-inflammatory cellular responses. American Journal of Translational Research (discontinued), 2009, 1, 267-82.	0.0	50
72	The role of MAP kinase phosphatase-1 in the protective mechanism of dexamethasone against endotoxemia. Life Sciences, 2008, 83, 671-680.	2.0	57

#	Article	IF	CITATIONS
73	Mitogen-activated Protein Kinase Phosphatase-1 Represses c-Jun NH2-terminal Kinase-mediated Apoptosis via NF-κB Regulation. Journal of Biological Chemistry, 2008, 283, 21011-21023.	1.6	40
74	Retinoic Acid Utilizes CREB and USF1 in a Transcriptional Feed-Forward Loop in Order To Stimulate MKP1 Expression in Human Immunodeficiency Virus-Infected Podocytes. Molecular and Cellular Biology, 2008, 28, 5785-5794.	1.1	45
75	MKP-1 inhibits high NaCl-induced activation of p38 but does not inhibit the activation of TonEBP/OREBP: Opposite roles of p381± and p381´. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5620-5625.	3.3	34
76	Cytokine-induced arginase activity in pulmonary endothelial cells is dependent on Src family tyrosine kinase activity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L688-L697.	1.3	20
77	Deficiency of mitogen-activated protein kinase phosphatase-1 results in iNOS-mediated hypotension in response to low-dose endotoxin. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1621-H1629.	1.5	13
78	Nitroalkenes Suppress Lipopolysaccharide-Induced Signal Transducer and Activator of Transcription Signaling in Macrophages: A Critical Role of Mitogen-Activated Protein Kinase Phosphatase 1. Endocrinology, 2008, 149, 4086-4094.	1.4	66
79	MKPâ€1 Deficiency Augments LPSâ€Induced NO Production in the Lung. FASEB Journal, 2008, 22, 1150.16.	0.2	0
80	MKPâ€1 inhibits iNOS expression during the innate immune response to LPS. FASEB Journal, 2008, 22, 675.2.	0.2	0
81	MAP Kinase Phosphataseâ€1 (MKPâ€1) Deficiency Leads to Reduced Atherosclerotic Lesion Formation in ApoEâ€null Mice. FASEB Journal, 2008, 22, 174.10.	0.2	0
82	Knockout of <i>Mkp-1</i> Enhances the Host Inflammatory Responses to Gram-Positive Bacteria. Journal of Immunology, 2007, 178, 5312-5320.	0.4	86
83	MKP-1 switches arginine metabolism from nitric oxide synthase to arginase following endotoxin challenge. American Journal of Physiology - Cell Physiology, 2007, 293, C632-C640.	2.1	46
84	MAPK phosphatases — regulating the immune response. Nature Reviews Immunology, 2007, 7, 202-212.	10.6	587
85	Feedback control of MKP-1 expression by p38. Cellular Signalling, 2007, 19, 393-400.	1.7	74
86	Regulation of innate immune response by MAP kinase phosphatase-1. Cellular Signalling, 2007, 19, 1372-1382.	1.7	139
87	Determination of the Sequence Specificity of XIAP BIR Domains by Screening a Combinatorial Peptide Libraryâ€. Biochemistry, 2006, 45, 14740-14748.	1.2	22
88	Production of active recombinant mitogen-activated protein kinases through transient transfection of 293T cells. Protein Expression and Purification, 2006, 46, 468-474.	0.6	6
89	Mechanism of triptolide-induced apoptosis: effect on caspase activation and Bid cleavage and essentiality of the hydroxyl group of triptolide. Journal of Molecular Medicine, 2006, 84, 405-415.	1.7	45
90	MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. Journal of Experimental Medicine, 2006, 203, 131-140.	4.2	358

#	Article	IF	CITATIONS
91	Gene transfer with inducible nitric oxide synthase decreases production of urea by arginase in pulmonary arterial endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L298-L306.	1.3	19
92	The Role of Mitogen-Activated Protein Kinase Phosphatase-1 in Oxidative Damage–Induced Cell Death. Cancer Research, 2006, 66, 4888-4894.	0.4	91
93	Mitogen-Activated Protein Kinase Phosphatase-1 Is Required for Cisplatin Resistance. Cancer Research, 2006, 66, 8870-8877.	0.4	98
94	ERK and p38 MAPK Signaling Pathways Negatively Regulate CIITA Gene Expression in Dendritic Cells and Macrophages. Journal of Immunology, 2006, 177, 70-76.	0.4	48
95	Mechanism of Triptolideâ€induced Apoptosis: Effect on Caspase Activation and Bid Cleavage and Essentiality of the Hydroxyl Group of Triptolide. FASEB Journal, 2006, 20, A123.	0.2	0
96	The Role of Mitogen-activated Protein Kinase Phosphatase-1 in the Response of Alveolar Macrophages to Lipopolysaccharide. Journal of Biological Chemistry, 2005, 280, 8101-8108.	1.6	208
97	Cytokine-Induced Endothelial Arginase Expression Is Dependent on Epidermal Growth Factor Receptor. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 394-401.	1.4	51
98	The Function of Mitogen-activated Protein Kinase Phosphatase-1 in Peptidoglycan-stimulated Macrophages. Journal of Biological Chemistry, 2004, 279, 54023-54031.	1.6	101
99	Tumor Promoter Arsenite Stimulates Histone H3 Phosphoacetylation of Proto-oncogenes c-fos and c-jun Chromatin in Human Diploid Fibroblasts. Journal of Biological Chemistry, 2003, 278, 13183-13191.	1.6	93
100	Arsenic Trioxide Promotes Histone H3 Phosphoacetylation at the Chromatin of CASPASE-10 in Acute Promyelocytic Leukemia Cells. Journal of Biological Chemistry, 2002, 277, 49504-49510.	1.6	90
101	Restraint of Proinflammatory Cytokine Biosynthesis by Mitogen-Activated Protein Kinase Phosphatase-1 in Lipopolysaccharide-Stimulated Macrophages. Journal of Immunology, 2002, 169, 6408-6416.	0.4	264
102	A Mammalian Expression System for Rapid Production and Purification of Active MAP Kinase Phosphatases. Protein Expression and Purification, 2002, 24, 481-488.	0.6	23
103	TC21 mediates transformation and cell survival via activation of phosphatidylinositol 3-kinase/Akt and NF-κB signaling pathway. Oncogene, 2002, 21, 1062-1070.	2.6	44
104	The carboxyl-terminal domains of MKP-1 and MKP-2 have inhibitory effects on their phosphatase activity. Molecular and Cellular Biochemistry, 2002, 233, 107-117.	1.4	14
105	Involvement of the MAP Kinase Pathways in Induction of GADD45 Following UV Radiation. Experimental Cell Research, 2001, 269, 64-72.	1.2	63
106	Discordance between the Binding Affinity of Mitogen-activated Protein Kinase Subfamily Members for MAP Kinase Phosphatase-2 and Their Ability to Activate the Phosphatase Catalytically. Journal of Biological Chemistry, 2001, 276, 29440-29449.	1.6	102
107	Transcriptional Induction of MKP-1 in Response to Stress Is Associated with Histone H3 Phosphorylation-Acetylation. Molecular and Cellular Biology, 2001, 21, 8213-8224.	1.1	172
108	Catalytic activation of mitogen-activated protein (MAP) kinase phosphatase-1 by binding to p38 MAP kinase: critical role of the p38 C-terminal domain in its negative regulation. Biochemical Journal, 2000, 352, 155.	1.7	33

#	Article	IF	CITATIONS
109	HuR Regulates p21 mRNA Stabilization by UV Light. Molecular and Cellular Biology, 2000, 20, 760-769.	1.1	502
110	Deficiency of PTEN in Jurkat T Cells Causes Constitutive Localization of Itk to the Plasma Membrane and Hyperresponsiveness to CD3 Stimulation. Molecular and Cellular Biology, 2000, 20, 6945-6957.	1.1	314
111	Transforming Growth Factor-β1 Suppresses Serum Deprivation-induced Death of A549 Cells through Differential Effects on c-Jun and JNK Activities. Journal of Biological Chemistry, 2000, 275, 18234-18242.	1.6	55
112	Catalytic activation of mitogen-activated protein (MAP) kinase phosphatase-1 by binding to p38 MAP kinase: critical role of the p38 C-terminal domain in its negative regulation. Biochemical Journal, 2000, 352, 155-163.	1.7	90
113	Impairments in Both p70 S6 Kinase and Extracellular Signal-Regulated Kinase Signaling Pathways Contribute to the Decline in Proliferative Capacity of Aged Hepatocytes. Experimental Cell Research, 1998, 240, 40-48.	1.2	20
114	The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochemical Journal, 1998, 333, 291-300.	1.7	701
115	Tumor Promoter Arsenite Activates Extracellular Signal-Regulated Kinase through a Signaling Pathway Mediated by Epidermal Growth Factor Receptor and Shc. Molecular and Cellular Biology, 1998, 18, 5178-5188.	1.1	145
116	Age-Related Changes in Activation of Mitogen-Activated Protein Kinase Cascades by Oxidative Stress. Journal of Investigative Dermatology Symposium Proceedings, 1998, 3, 23-27.	0.8	11
117	Posttranslational Mechanisms Leading to Mammalian Gene Activation in Response to Genotoxic Stress. , 1998, , 263-298.		5
118	Induction of Mitogen-Activated Protein Kinase Phosphatase-1 During Acute Hypertension. Hypertension, 1997, 30, 106-111.	1.3	27
119	Activation of Mitogen-activated Protein Kinase by H2O2. Journal of Biological Chemistry, 1996, 271, 4138-4142.	1.6	986
120	Differential activation of ERK, JNK/SAPK and P3/CSBP/RK map kinase family members during the cellular response to arsenite. Free Radical Biology and Medicine, 1996, 21, 771-781.	1.3	203
121	Age-related Decline in Mitogen-activated Protein Kinase Activity in Epidermal Growth Factor-stimulated Rat Hepatocytes. Journal of Biological Chemistry, 1996, 271, 3604-3607.	1.6	279
122	Role of Mitogen-activated Protein Kinase Phosphatase during the Cellular Response to Genotoxic Stress. Journal of Biological Chemistry, 1995, 270, 8377-8380.	1.6	272
123	Cloning and characterization of the Saccharomyces cerevisiae SVS1 gene which encodes a serine- and threonine-rich protein required for vanadate resistance. Gene, 1995, 165, 25-29.	1.0	19
124	Cloning and Molecular Analysis of cDNA Encoding a Carboxymethylcellulase of the Yeast <i>Cryptococcus flavus</i> . Bioscience, Biotechnology and Biochemistry, 1992, 56, 1230-1235.	0.6	14
125	TheSaccharomyces cerevisiae genes (CMP1 andCMP2) encoding calmodulin-binding proteins homologous to the catalytic subunit of mammalian protein phosphatase 2B. Molecular Genetics and Genomics, 1991, 227, 52-59.	2.4	182
126	Calmodulin-binding proteins of Saccharomycescerevisiae. Biochemical and Biophysical Research Communications, 1990, 166, 681-686.	1.0	14