MarÃ-a del Mar Eva Alemany-DÃ-az

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2870394/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Computers in Industry, 2020, 117, 103187.	9.9	377
2	Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. International Journal of Production Research, 2018, 56, 4418-4446.	7.5	60
3	Mathematical modelling of the order-promising process for fruit supply chains considering the perishability and subtypes of products. Applied Mathematical Modelling, 2017, 49, 255-278.	4.2	39
4	Structural elements of coordination mechanisms in collaborative planning processes and their assessment through maturity models: Application to a ceramic tile company. Computers in Industry, 2013, 64, 898-911.	9.9	38
5	A design and application methodology for hierarchical production planning decision support systems in an enterprise integration context. International Journal of Production Economics, 2001, 74, 5-20.	8.9	37
6	Impact of product perishability on agri-food supply chains design. Applied Mathematical Modelling, 2021, 96, 20-38.	4.2	35
7	Mathematical programming model for centralised master planning in ceramic tile supply chains. International Journal of Production Research, 2010, 48, 5053-5074.	7.5	34
8	Available-To-Promise modeling for multi-plant manufacturing characterized by lack of homogeneity in the product: An illustration of a ceramic case. Applied Mathematical Modelling, 2013, 37, 3380-3398.	4.2	32
9	Fuzzy multi-objective optimisation for master planning in a ceramic supply chain. International Journal of Production Research, 2012, 50, 3011-3020.	7.5	29
10	An application to support the temporal and spatial distributed decision-making process in supply chain collaborative planning. Computers in Industry, 2011, 62, 519-540.	9.9	28
11	Conceptual framework for the characterization of the order promising process in a collaborative selling network context. International Journal of Production Economics, 2009, 120, 100-114.	8.9	27
12	Centralized and distributed optimization models for the multi-farmer crop planning problem under uncertainty: Application to a fresh tomato Argentinean supply chain case study. Computers and Industrial Engineering, 2021, 153, 107048.	6.3	26
13	La falta de homogeneidad del producto (FHP) en las empresas cerámicas y su impacto en la reasignación del inventario. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2011, 50, 49-58.	1.9	19
14	A review of mathematical models for supporting the order promising process under Lack of Homogeneity in Product and other sources of uncertainty. Computers and Industrial Engineering, 2016, 91, 239-261.	6.3	17
15	Review of mathematical models for production planning under uncertainty due to lack of homogeneity: proposal of a conceptual model. International Journal of Production Research, 2019, 57, 5239-5283.	7.5	17
16	A fuzzy model for shortage planning under uncertainty due to lack of homogeneity in planned production lots. Applied Mathematical Modelling, 2015, 39, 4463-4481.	4.2	16
17	Application of particle swarm optimisation with backward calculation to solve a fuzzy multi-objective supply chain master planning model. International Journal of Bio-Inspired Computation, 2015, 7, 157.	0.9	15
18	A model-driven DSS architecture for delivery management in collaborative supply chains with lack of homogeneity in products. Production Planning and Control, 2014, 25, 650-661.	8.8	14

#	Article	IF	CITATIONS
19	Order promising process for extended collaborative selling chain. Production Planning and Control, 2008, 19, 105-131.	8.8	13
20	Optimization model to support sustainable crop planning for reducing unfairness among farmers. Central European Journal of Operations Research, 2022, 30, 1101-1127.	1.8	11
21	A MODEL-DRIVEN DECISION SUPPORT SYSTEM FOR REALLOCATION OF SUPPLY TO ORDERS UNDER UNCERTAINTY IN CERAMIC COMPANIES. Technological and Economic Development of Economy, 2015, 21, 596-625.	4.6	10
22	Artificial Intelligence in Supply Chain Operations Planning: Collaboration and Digital Perspectives. IFIP Advances in Information and Communication Technology, 2020, , 365-378.	0.7	10
23	Conceptual Framework for Managing Uncertainty in a Collaborative Agri-Food Supply Chain Context. IFIP Advances in Information and Communication Technology, 2017, , 715-724.	0.7	9
24	Fuzzy sets to model master production effectively in Make to Stock companies with Lack of Homogeneity in the Product. Fuzzy Sets and Systems, 2016, 293, 95-112.	2.7	8
25	Methodology for the design and simulation of industrial facilities and production systems based on a modular approach in an "industry 4.0" context. DYNA (Colombia), 2018, 85, 243-252.	0.4	8
26	Simulation to reallocate supply to committed orders under shortage. International Journal of Production Research, 2019, 57, 1552-1570.	7.5	8
27	A multi-objective model for inventory and planned production reassignment to committed orders with homogeneity requirements. Computers and Industrial Engineering, 2018, 124, 180-194.	6.3	7
28	A Fuzzy Order Promising Model With Non-Uniform Finished Goods. International Journal of Fuzzy Systems, 2018, 20, 187-208.	4.0	6
29	A decision support tool for the order promising process with product homogeneity requirements in hybrid Make-To-Stock and Make-To-Order environments. Application to a ceramic tile company. Computers and Industrial Engineering, 2018, 122, 219-234.	6.3	6
30	Possibilistic compositions and state functions: application to the order promising process for perishables. International Journal of Production Research, 2019, 57, 7006-7031.	7.5	6
31	A Comparison of Machine Learning and Classical Demand Forecasting Methods: A Case Study of Ecuadorian Textile Industry. Lecture Notes in Computer Science, 2020, , 131-142.	1.3	6
32	El proceso de comprometer pedidos de un paquete de productos integrado por productos del sector cerámico y productos complementarios: Parte II Descripción de la metodologÃa de solución. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2007, 46, 29-38.	1.9	6
33	How to Support Group Decision Making in Horticulture: An Approach Based on the Combination of a Centralized Mathematical Model and a Group Decision Support System. Lecture Notes in Business Information Processing, 2019, , 83-94.	1.0	5
34	Using LEL and scenarios to derive mathematical programming models. Application in a fresh tomato packing problem. Computers and Electronics in Agriculture, 2020, 170, 105242.	7.7	5
35	Configurable DSS for Uncertainty Management by Fuzzy Sets. Procedia Computer Science, 2016, 83, 1019-1024.	2.0	4
36	Demand Forecasting for Textile Products Using Statistical Analysis and Machine Learning Algorithms. Lecture Notes in Computer Science, 2021, , 181-194.	1.3	4

#	Article	IF	CITATIONS
37	Reasignación óptima del inventario a pedidos en empresas cerámicas caracterizadas por la falta de homogeneidad en el producto (FHP). Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2013, 52, 31-41.	1.9	4
38	Framework for Modelling the Decision. International Journal of Decision Support System Technology, 2012, 4, 59-77.	0.7	4
39	RUBRIC FOR THE ASSESSMENT THE COMPETENCE OF INNOVATION CREATIVITY AND ENTREPRENEURSHIP IN BACHELOR DEGREE. Brazilian Journal of Operations and Production Management, 2016, 13, 118.	1.4	4
40	A Decentralized Production and Distribution Planning Model in an Uncertain Environment. Studies in Fuzziness and Soft Computing, 2014, , 317-353.	0.8	3
41	El proceso de comprometer pedidos de un paquete de productos integrado por productos del sector cerámico y productos complementarios: Parte I Descripción y caracterización de la problemática. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2007, 46, 21-28.	1.9	3
42	Event Monitoring Software Application for Production Planning Systems. Lecture Notes in Management and Industrial Engineering, 2015, , 123-130.	0.4	3
43	Value-Chain Wide Food Waste Management: A Systematic Literature Review. Lecture Notes in Business Information Processing, 2019, , 41-54.	1.0	2
44	Modelling Pricing Policy Based on Shelf-Life of Non Homogeneous Available-To-Promise in Fruit Supply Chains. IFIP Advances in Information and Communication Technology, 2016, , 608-617.	0.7	2
45	Métodos y Modelos Deterministas e Inciertos para la Gestión de Cadenas de Suministro Agroalimentarias. Direccion Y Organizacion, 0, , 41-46.	0.3	2
46	CONCEPTUAL FRAMEWORK FOR APPLYING INTERNET OF THINGS IN PRODUCTION SYSTEMS FOR SENSING ENTERPRISES. Brazilian Journal of Operations and Production Management, 2016, 13, 66.	1.4	2
47	A Conceptual Framework for Modelling the Collaborative Order Management Process. , 2009, , .		1
48	A mathematical programming tool for an efficient decision-making on teaching assignment under non-regular time schedules. Operational Research, 0, , 1.	2.0	1
49	The Methodology of Modeling the Decision-Making Process for Planning the Logistics Supply Chain. Advances in Intelligent Systems and Computing, 2016, , 85-96.	0.6	1
50	Optimization Models to Improve First Quality Agricultural Production Through a Collaboration Program in Different Scenarios. IFIP Advances in Information and Communication Technology, 2020, , 546-559.	0.7	1
51	A Forecasting Model to Predict the Demand of Roses in an Ecuadorian Small Business Under Uncertain Scenarios. Lecture Notes in Computer Science, 2020, , 245-258.	1.3	1
52	Increasing the sustainability of a fresh vegetables supply chain through the optimization of funding programs: A multi-objective mathematical programming approach. Journal of Industrial Engineering and Management, 2022, 15, 256.	1.5	1
53	Event Management for Sensing Enterprises with Decision Support Systems. Annals of Data Science, 2015, 2, 103-109.	3.2	0
54	ANALYSIS OF DIGITAL TEACHING TOOLS IN THE NEW EDUCATIONAL PARADIGM. , 2021, , .		0

#	Article	IF	CITATIONS
55	METODOLOGÃA PARA LA REINGENIERIA BASADA EN EL MODELADO DE PROCESOS DE NEGOCIO. Dyna (Spain), 2012, 87, 566-573.	0.2	0
56	Set-up Continuity in Tactical Planning of Semi-Continuous Industrial Processes. Lecture Notes in Management and Industrial Engineering, 2014, , 165-173.	0.4	0
57	Order Promising Process for Supply Chains with Lack of Homogeneity in the Product. Lecture Notes in Management and Industrial Engineering, 2014, , 185-192.	0.4	0
58	A Mathematical Programming Model for Tactical Planning with Set-up Continuity in a Two-stage Ceramic Firm. International Journal of Production Management and Engineering, 2016, 4, 53.	1.5	0
59	Event Monitoring System to Classify Unexpected Events for Production Planning. Lecture Notes in Business Information Processing, 2017, , 140-154.	1.0	0
60	A Decision Support Tool for the Selection of Promoting Actions to Encourage Collaboration in Projects for the Agriculture Sector. IFIP Advances in Information and Communication Technology, 2020, , 534-545.	0.7	0
61	Architecture description for the resolution of the product pack order promising process in a collaborative context. , 2020, , 523-531.		0
62	EMPLOYERS' PERCEPTION OF THE SUSTAINABLE DEVELOPMENT GOALS IN HIGHER TECHNICAL EDUCATION: REVISION. INTED Proceedings, 2022, , .	A _{0.0}	0
63	HOW TO KNOW THE AWARENESS OF SUSTAINABLE DEVELOPMENT GOALS AMONG STUDENTS? A REVISION OF QUESTIONNAIRE SURVEYS. INTED Proceedings, 2022, , .	0.0	0