Dan Binkley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2870393/publications.pdf

Version: 2024-02-01

		17440	23533
158	13,246	63	111
papers	citations	h-index	g-index
169	169	169	9776
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	EXOTIC PLANT SPECIES INVADE HOT SPOTS OF NATIVE PLANT DIVERSITY. Ecological Monographs, 1999, 69, 25-46.	5.4	835
2	Impact of several common tree species of European temperate forests on soil fertility. Annals of Forest Science, 2002, 59, 233-253.	2.0	682
3	Why do Tree Species Affect Soils? The Warp and Woof of Tree-soil Interactions. Biogeochemistry, 1998, 42, 89-106.	3.5	514
4	Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology, 2006, 12, 489-499.	9.5	394
5	AN EXPERIMENTAL TEST OF THE CAUSES OF FOREST GROWTH DECLINE WITH STAND AGE. Ecological Monographs, 2004, 74, 393-414.	5.4	310
6	The Brazil Eucalyptus Potential Productivity Project: Influence of water, nutrients and stand uniformity on wood production. Forest Ecology and Management, 2010, 259, 1684-1694.	3.2	308
7	Foliage litter quality and annual net N mineralization: comparison across North American forest sites. Oecologia, 1997, 111, 151-159.	2.0	303
8	Greater Soil Carbon Sequestration under Nitrogen-fixing Trees Compared with Eucalyptus Species. Ecosystems, 2002, 5, 217-231.	3.4	295
9	Ion Exchange Resin Bag Method for Assessing Forest Soil Nitrogen Availability. Soil Science Society of America Journal, 1983, 47, 1050-1052.	2.2	286
10	Nutritional interactions in mixed species forests: a synthesis. Canadian Journal of Forest Research, 2001, 31, 1855-1870.	1.7	267
11	Eucalyptus production and the supply, use and efficiency of use of water, light and nitrogen across a geographic gradient in Brazil. Forest Ecology and Management, 2004, 193, 17-31.	3.2	246
12	Thinking about efficiency of resource use in forests. Forest Ecology and Management, 2004, 193, 5-16.	3.2	234
13	Fifty-year biogeochemical effects of green ash, white pine, and Norway spruce in a replicated experiment. Forest Ecology and Management, 1991, 40, 13-25.	3.2	221
14	Soil Security: Solving the Global Soil Crisis. Global Policy, 2013, 4, 434-441.	1.7	219
15	Age-related Decline in Forest Ecosystem Growth: An Individual-Tree, Stand-Structure Hypothesis. Ecosystems, 2002, 5, 58-67.	3.4	214
16	Does atmospheric deposition of nitrogen threaten Swedish forests?. Forest Ecology and Management, 1997, 92, 119-152.	3.2	201
17	Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest. Global Change Biology, 2003, 9, 1438-1450.	9.5	163
18	CHANGES IN SOIL CARBON FOLLOWING AFFORESTATION IN HAWAII. Ecology, 1998, 79, 828-833.	3.2	159

#	Article	IF	Citations
19	FOREST PRACTICES AS NONPOINT SOURCES OF POLLUTION IN NORTH AMERICA. Journal of the American Water Resources Association, 1993, 29, 729-740.	2.4	156
20	Explaining growth of individual trees: Light interception and efficiency of light use by Eucalyptus at four sites in Brazil. Forest Ecology and Management, 2010, 259, 1704-1713.	3.2	156
21	Factors controlling Eucalyptus productivity: How water availability and stand structure alter production and carbon allocation. Forest Ecology and Management, 2010, 259, 1695-1703.	3.2	156
22	Ion Exchange Resin Bags: Factors Affecting Estimates of Nitrogen Availability. Soil Science Society of America Journal, 1984, 48, 1181-1184.	2,2	152
23	The interactions of climate, spacing and genetics on clonal Eucalyptus plantations across Brazil and Uruguay. Forest Ecology and Management, 2017, 405, 271-283.	3.2	150
24	Twenty years of stand development in pure and mixed stands of Eucalyptus saligna and nitrogen-fixing Facaltaria moluccana. Forest Ecology and Management, 2003, 182, 93-102.	3.2	149
25	A hypothesis about the interaction of tree dominance and stand production through stand development. Forest Ecology and Management, 2004, 190, 265-271.	3.2	148
26	Relationships between litter quality and nitrogen availability in Rocky Mountain forests. Canadian Journal of Forest Research, 1993, 23, 492-502.	1.7	147
27	Light absorption and use efficiency in forests: Why patterns differ for trees and stands. Forest Ecology and Management, 2013, 288, 5-13.	3.2	146
28	Tree Species and Soil Textural Controls on Carbon and Nitrogen Mineralization Rates. Soil Science Society of America Journal, 2001, 65, 1272-1279.	2.2	142
29	A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant and Soil, 1992, 147, 243-250.	3.7	138
30	Belowground carbon cycling in a humid tropical forest decreases with fertilization. Oecologia, 2004, 139, 545-550.	2.0	137
31	Influence of red alder on soil nitrogen transformations in two conifer forests of contrasting productivity. Soil Biology and Biochemistry, 1997, 29, 1111-1123.	8.8	131
32	Production and carbon allocation in a clonal Eucalyptus plantation with water and nutrient manipulations. Forest Ecology and Management, 2008, 255, 920-930.	3.2	129
33	Water quality impacts of forest fertilization with nitrogen and phosphorus. Forest Ecology and Management, 1999, 121, 191-213.	3.2	121
34	Landscape analysis of plant diversity. Landscape Ecology, 1997, 12, 155-170.	4.2	114
35	Ecosystem production in Douglas-fir plantations: Interaction of red alder and site fertility. Forest Ecology and Management, 1983, 5, 215-227.	3. 2	111
36	Alders increase soil phosphorus availability in a Douglas-fir plantation. Canadian Journal of Forest Research, 1995, 25, 1652-1657.	1.7	107

#	Article	IF	CITATIONS
37	Expansion of forest stands into tundra in the Noatak National Preserve, northwest Alaska. Ecoscience, 1999, 6, 465-470.	1.4	104
38	Soil phosphorus pools and supply under the influence of Eucalyptus saligna and nitrogen-fixing Albizia facaltaria. Forest Ecology and Management, 2000, 128, 241-247.	3.2	101
39	Prescribed burning increased nitrogen availability in a mature loblolly pine stand. Forest Ecology and Management, 1986, 14, 13-22.	3.2	98
40	Testing the utility of the 3-PG model for growth of with natural and manipulated supplies of water and nutrients. Forest Ecology and Management, 2004, 193, 219-234.	3.2	98
41	Spatial and temporal patterns in structure, regeneration, and mortality of an old-growth ponderosa pine forest in the Colorado Front Range. Forest Ecology and Management, 2005, 219, 43-55.	3.2	97
42	Tamm Review: Revisiting the influence of nitrogen deposition on Swedish forests. Forest Ecology and Management, 2016, 368, 222-239.	3.2	96
43	Patterns of growth dominance in forests of the Rocky Mountains, USA. Forest Ecology and Management, 2006, 236, 193-201.	3.2	95
44	Detecting Change in Forest Floor Carbon. Soil Science Society of America Journal, 2003, 67, 1583-1593.	2.2	92
45	Effects of Dinitrogenâ€Fixing Trees on Phosphorus Biogeochemical Cycling in Contrasting Forests. Soil Science Society of America Journal, 1995, 59, 1452-1458.	2.2	91
46	Natural Abundance of Nitrogen-15 as a Tool for Tracing Alder-Fixed Nitrogen. Soil Science Society of America Journal, 1985, 49, 444-447.	2.2	90
47	An empirical analysis of the factors contributing to 20-year decrease in soil pH in an old-field plantation of loblolly pine. Biogeochemistry, 1989, 8, 39-54.	3.5	89
48	Rapid Changes in Soils Following Eucalyptus Afforestation in Hawaii. Soil Science Society of America Journal, 1999, 63, 222-225.	2.2	89
49	NITROGEN AND PHOSPHORUS CONCENTRATIONS IN FOREST STREAMS OF THE UNITED STATES. Journal of the American Water Resources Association, 2004, 40, 1277-1291.	2.4	87
50	Patterns of nitrogen accumulation and cycling in riparian floodplain ecosystems along the Green and Yampa rivers. Oecologia, 2004, 139, 108-116.	2.0	86
51	COMPETITION AND FACILITATION BETWEEN EUCALYPTUS AND NITROGEN-FIXING FALCATARIA IN RELATION TO SOIL FERTILITY. Ecology, 2005, 86, 992-1001.	3.2	86
52	COMPETITION AMONG <i>EUCALYPTUS</i> TREES DEPENDS ON GENETIC VARIATION AND RESOURCE SUPPLY. Ecology, 2008, 89, 2850-2859.	3.2	86
53	Seven decades of stand development in mixed and pure stands of conifers and nitrogen-fixing red alder. Canadian Journal of Forest Research, 2003, 33, 2274-2279.	1.7	85
54	Does forest removal increase rates of decomposition and nitrogen release? Forest Ecology and Management, 1984, 8, 229-233.	3.2	84

#	Article	IF	Citations
55	Tree-girdling to separate root and heterotrophic respiration in two Eucalyptus stands in Brazil. Oecologia, 2006, 148, 447-454.	2.0	83
56	Aspen regeneration in the Colorado Front Range: differences at local and landscape scales. Landscape Ecology, 1999, 14, 231-237.	4.2	78
57	Factors Determining Differences in Soil pH in Adjacent Conifer and Alderâ€Conifer Stands. Soil Science Society of America Journal, 1990, 54, 1427-1433.	2.2	73
58	Net primary production and nutrient cycling in replicated stands of Eucalyptus saligna and Albizia facaltaria. Forest Ecology and Management, 1998, 112, 79-85.	3.2	73
59	Do Forests Receive Occult Inputs of Nitrogen?. Ecosystems, 2000, 3, 321-331.	3.4	73
60	Unsupported inferences of highâ€severity fire in historical dry forests of the western <scp>U</scp> nited <scp>S</scp> tates: response to <scp>W</scp> illiams and <scp>B</scp> aker. Global Ecology and Biogeography, 2014, 23, 825-830.	5.8	70
61	Long-term responses of stem growth and leaf area to thinning and fertilization in a Douglas-fir plantation. Canadian Journal of Forest Research, 1984, 14, 656-660.	1.7	69
62	Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes. Forest Ecology and Management, 2013, 288, 49-59.	3.2	68
63	Soil nitrogen availability in some arctic ecosystems in northwest Alaska: Responses to temperature and moisture. Ecoscience, 1994, 1, 64-70.	1.4	66
64	Was Aldo Leopold Right about the Kaibab Deer Herd?. Ecosystems, 2006, 9, 227-241.	3.4	63
65	Stem production, light absorption and light use efficiency between dominant and non-dominant trees of Eucalyptus grandis across a productivity gradient in Brazil. Forest Ecology and Management, 2013, 288, 14-20.	3.2	62
66	Nutrient supply and declines in leaf area and production in lodgepoie pine. Canadian Journal of Forest Research, 1995, 25, 621-628.	1.7	61
67	Alder (<i>Alnus crispa</i>) effects on soils in ecosystems of the Agashashok River valley, northwest Alaska. Ecoscience, 2001, 8, 89-95.	1.4	61
68	Fertilization and irrigation effects on tree level aboveground net primary production, light interception and light use efficiency in a loblolly pine plantation. Forest Ecology and Management, 2013, 288, 43-48.	3.2	61
69	Firstâ€Rotation Changes in Soil Carbon and Nitrogen in a <i>Eucalyptus</i> Plantation in Hawaii. Soil Science Society of America Journal, 2004, 68, 1713-1719.	2.2	58
70	Exploring the mega-fire reality: A â€~Forest Ecology and Management' conference. Forest Ecology and Management, 2013, 294, 1-3.	3.2	58
71	A twin-plot approach to determine nutrient limitation and potential productivity in Eucalyptus plantations at landscape scales in Brazil. Forest Ecology and Management, 2006, 223, 358-362.	3.2	56
72	Correlations among indices of forest soil nutrient availability in fertilized and unfertilized loblolly pine plantations. Plant and Soil, 1985, 85, 11-21.	3.7	54

#	Article	IF	CITATIONS
73	Comparison of methods for estimating soil nitrogen transformations in adjacent conifer and alder–conifer forests. Canadian Journal of Forest Research, 1992, 22, 858-863.	1.7	54
74	Title is missing!. Biogeochemistry, 2003, 63, 1-22.	3 . 5	53
75	Ecosystem development on terraces along the Kugururok River, northwest Alaska. Ecoscience, 1997, 4, 311-318.	1.4	52
76	Phosphorus limitation on nitrogen fixation by Facaltaria seedlings. Forest Ecology and Management, 2003, 186, 171-176.	3.2	52
77	Eucalyptus plantation effects on soil carbon after 20years and three rotations in Brazil. Forest Ecology and Management, 2016, 359, 92-98.	3.2	51
78	Resin-core and buried-bag estimates of nitrogen transformations in Costa Rican lowland rainforests. Plant and Soil, 1992, 139, 275-283.	3.7	50
79	Influence of elk grazing on soil properties in Rocky Mountain National Park. Forest Ecology and Management, 2003, 185, 239-247.	3.2	49
80	Soil nutrient losses in an altered ecosystem are associated with native ungulate grazing. Journal of Applied Ecology, 2011, 48, 952-960.	4.0	47
81	Attributes of reliable long-term landscape-scale studies: Malpractice insurance for landscape ecologists. Environmental Monitoring and Assessment, 1995, 36, 1-25.	2.7	45
82	Soil chemistry changes after 27 years under four tree species in southern Ontario. Canadian Journal of Forest Research, 1989, 19, 1648-1650.	1.7	44
83	Water chemistry profiles in an early- and a mid-successional forest in coastal British Columbia. Canadian Journal of Forest Research, 1982, 12, 240-248.	1.7	43
84	Bioassays of the influence of Eucalyptus saligna and Albizia falcataria on soil nutrient supply and limitation. Forest Ecology and Management, 1997, 91, 229-234.	3.2	43
85	Variation in whole-rotation yield among Eucalyptus genotypes in response to water and heat stresses: The TECHS project. Forest Ecology and Management, 2020, 462, 117953.	3.2	43
86	Water use, water limitation, and water use efficiency in a Eucalyptus plantation. Bosque, 2004, 25, 35.	0.3	42
87	EFFECTS OF ELK HERBIVORY ON VEGETATION AND NITROGEN PROCESSES. Journal of Wildlife Management, 2004, 68, 837-849.	1.8	42
88	The independence of clonal shoot's growth from light availability supports moso bamboo invasion of closed-canopy forest. Forest Ecology and Management, 2016, 368, 105-110.	3.2	41
89	Soil nitrogen mineralization and immobilization in response to periodic prescribed fire in a loblolly pine plantation. Canadian Journal of Forest Research, 1989, 19, 816-820.	1.7	40
90	Variation in canopy structure, leaf area, light interception and light use efficiency among Eucalyptus clones. Forest Ecology and Management, 2020, 463, 118038.	3.2	40

#	Article	IF	CITATIONS
91	Plant diversity in riparian forests in northwest Colorado: Effects of time and river regulation. Forest Ecology and Management, 2005, 218, 107-114.	3.2	38
92	Biomass, Production, and Nutrient Cycling of Mosses in an Old-Growth Douglas-Fir Forest. Ecology, 1981, 62, 1387-1389.	3.2	36
93	Neighborhood uniformity increases growth of individual Eucalyptus trees. Forest Ecology and Management, 2013, 289, 90-97.	3.2	36
94	Soil carbon stocks and forest biomass following conversion of pasture to broadleaf and conifer plantations in southeastern Brazil. Forest Ecology and Management, 2014, 324, 37-45.	3.2	36
95	Nodule biomass and acetylene reduction rates of red alder and Sitka alder on Vancouver Island, B.C Canadian Journal of Forest Research, 1981, 11, 282-287.	1.7	33
96	Nitrogen mineralization in high elevation forests of the Appalachians. I. Regional patterns in southern spruce-fir forests. Biogeochemistry, 1989, 7, 131-145.	3.5	33
97	Long-term increase of nitrogen availability from fertilization of Douglas-fir. Canadian Journal of Forest Research, 1985, 15, 723-724.	1.7	32
98	Soil Functional Responses to Excess Nitrogen Inputs at Global Scale. Ambio, 2004, 33, 530-536.	5.5	32
99	Converging patterns of vertical variability in leaf morphology and nitrogen across seven Eucalyptus plantations in Brazil and Hawaii, USA. Trees - Structure and Function, 2014, 28, 1-15.	1.9	32
100	Linking competition with Growth Dominance and production ecology. Forest Ecology and Management, 2018, 414, 99-107.	3.2	32
101	Structure, production and resource use in some old-growth spruce/fir forests in the Front Range of the Rocky Mountains, USA. Forest Ecology and Management, 2003, 172, 271-279.	3.2	31
102	Age distribution of aspen in Rocky Mountain National Park, USA. Forest Ecology and Management, 2008, 255, 797-802.	3.2	31
103	Does reverse growth dominance develop in old plantations of Eucalyptus saligna?. Forest Ecology and Management, 2010, 259, 1815-1818.	3.2	30
104	Dominant clonal Eucalyptus grandis $\tilde{A}-$ urophylla trees use water more efficiently. Forest Ecology and Management, 2014, 328, 117-121.	3.2	30
105	Exotic Plant Species Invade Hot Spots of Native Plant Diversity. Ecological Monographs, 1999, 69, 25.	5.4	30
106	Simulated effects of atmospheric deposition, harvesting, and species change on nutrient cycling in a loblolly pine forest. Forest Ecology and Management, 1995, 76, 29-45.	3.2	29
107	Aspen structure and variability in Rocky Mountain National Park, Colorado, USA. Landscape Ecology, 2003, 18, 591-603.	4.2	29
108	Ten-year decomposition in a loblolly pine forest. Canadian Journal of Forest Research, 2002, 32, 2231-2235.	1.7	28

#	Article	IF	CITATIONS
109	Importance of sizeâ€"density relationships in mixed stands of douglas-fir and red alder. Forest Ecology and Management, 1984, 9, 81-85.	3.2	26
110	Colorimetric interference and recovery of adsorbed ions from ion exchange resins. Communications in Soil Science and Plant Analysis, 1984, 15, 893-902.	1.4	26
111	Co-limitation of first year Fremont cottonwood seedlings by nitrogen and water. Wetlands, 2002, 22, 425-429.	1.5	26
112	Carbon fluxes, storage and harvest removals through 60years of stand development in red pine plantations and mixed hardwood stands in Northern Michigan, USA. Forest Ecology and Management, 2015, 337, 88-97.	3.2	25
113	Mineralization and immobilization of soil nitrogen in two Douglas-fir stands 15 and 22 years after nitrogen fertilization. Canadian Journal of Forest Research, 1989, 19, 798-801.	1.7	22
114	Nitrogen fixation and the mass balances of carbon and nitrogen in ecosystems. Biogeochemistry, 1998, 43, 63-78.	3.5	21
115	Nitrogen fixation and net primary production in a young Sitka alder stand. Canadian Journal of Botany, 1982, 60, 281-284.	1.1	20
116	Tree-Level Patterns of Lodgepole Pine Growth and Leaf Area in Yellowstone National Park: Explaining Anomalous Patterns of Growth Dominance Within Stands. Ecosystems, 2015, 18, 251-259.	3.4	20
117	Nitrogen accretion, soil fertility, and Douglas-fir nutrition in association with redstem ceanothus. Canadian Journal of Forest Research, 1983, 13, 122-125.	1.7	19
118	Canopy profiles of some Piedmont hardwood forests. Canadian Journal of Forest Research, 1988, 18, 1090-1093.	1.7	19
119	Topography and Soil Acidity in an Arctic Landscape. Soil Science Society of America Journal, 1992, 56, 1553-1559.	2.2	19
120	Non″abile Soil ¹⁵ Nitrogen Retention beneath Three Tree Species in a Tropical Plantation. Soil Science Society of America Journal, 2002, 66, 612-619.	2.2	19
121	Spatial extent of impact of red alder on soil chemistry of adjacent conifer stands. Canadian Journal of Forest Research, 1992, 22, 1434-1437.	1.7	18
122	Soil Acidity in Loblolly Pine Stands with Interval Burning. Soil Science Society of America Journal, 1986, 50, 1590-1594.	2.2	17
123	Nitrogen mineralization in high-elevation forests of the appalachians. II. Patterns with stand development in fir waves. Biogeochemistry, 1989, 7, 147-156.	3.5	17
124	LAWS AND PROGRAMS FOR CONTROLLING NONPOINT SOURCE POLLUTION IN FOREST AREAS. Journal of the American Water Resources Association, 1993, 29, 1-13.	2.4	17
125	Not just about the trees: Key role of mosaic-meadows in restoration of ponderosa pine ecosystems. Forest Ecology and Management, 2018, 411, 120-131.	3.2	17
126	Soil nitrogen accretion along a floodplain terrace chronosequence in northwest Alaska: Influence of the nitrogen-fixing shrub Shepherdia canadensis. Ecoscience, 2008, 15, 223-230.	1.4	16

#	Article	IF	Citations
127	Are long-term changes in plant species composition related to asymmetric growth dominance in the pristine BiaÅ,owieża Forest?. Basic and Applied Ecology, 2016, 17, 408-417.	2.7	16
128	Ecosystems in four dimensions. New Phytologist, 2015, 206, 883-885.	7.3	15
129	Soil Carbon Dynamics Following Reforestation of Tropical Pastures. Soil Science Society of America Journal, 2014, 78, 290-296.	2.2	14
130	Carbon fixation in trees as a micro optimization process: an example of combining ecology and economics. Ecological Economics, 1990, 2, 243-256.	5.7	13
131	Parent material depth controls ecosystem composition and function on a riverside terrace in northwestern Alaska. Ecoscience, 1995, 2, 377-381.	1.4	13
132	Influence of adjacent stand on spatial patterns of soil carbon and nitrogen in Eucalyptus and Albizia plantations. Canadian Journal of Forest Research, 1996, 26, 1501-1503.	1.7	13
133	Bark beetle effects on a seven-century chronosequence of Engelmann spruce and subalpine fir in Colorado, USA. Forest Ecology and Management, 2016, 361, 154-162.	3.2	13
134	Climate and genotype influences on carbon fluxes and partitioning in Eucalyptus plantations. Forest Ecology and Management, 2020, 475, 118445.	3.2	13
135	Benefits of an "Undesirable―Approach to Natural Resource Management. Journal of Forestry, 2016, 114, 658-665.	1.0	11
136	Age structure of aspen forests on the Uncompangre Plateau, Colorado. Canadian Journal of Forest Research, 2014, 44, 836-841.	1.7	10
137	Can Nitrogen Fertilization Aid Restoration of Mature Tree Productivity in Degraded Dryland Riverine Ecosystems?. Restoration Ecology, 2014, 22, 582-589.	2.9	9
138	Cross-site patterns in the response of Eucalyptus plantations to irrigation, climate and intra-annual weather variation. Forest Ecology and Management, 2020, 475, 118444.	3.2	8
139	Predicting Loblolly Pine Current Growth and Growth Response to Fertilization. Soil Science Society of America Journal, 1986, 50, 230-233.	2.2	7
140	The effects of soil fertility and scale on competition in ponderosa pine. European Journal of Forest Research, 2016, 135, 153-160.	2.5	7
141	Assessing the cross-site and within-site response of potential production to atmospheric demand for water in Eucalyptus plantations. Forest Ecology and Management, 2020, 464, 118068.	3.2	7
142	Production ecology and reverse growth dominance in an old-growth ponderosa pine forest. Forest Ecology and Management, 2020, 460, 117891.	3.2	6
143	Effects of artificial conifer foliage on collection of precipitation and nutrients in coastal British Columbia. Canadian Journal of Forest Research, 1981, 11, 457-458.	1.7	5
144	Changes in Soil Carbon following Afforestation in Hawaii. Ecology, 1998, 79, 828.	3.2	5

#	Article	IF	CITATIONS
145	Tree biomass and net increment in an old aspen forest in New Mexico. Forest Ecology and Management, 2004, 203, 407-410.	3.2	4
146	How Productive Is Your Planet?. Conservation Biology, 2002, 16, 1664-1665.	4.7	3
147	Forest soils in the Anthropocene. Developments in Soil Science, 2019, 36, 9-26.	0.5	2
148	The earth as transformed by human action: Global and regional changes in the biosphere over the past 300 years. Forest Ecology and Management, 1992, 55, 341-342.	3.2	1
149	Editorial: Four tips for communicating clearly with readers: Designs, interpretations, and statistics. Trees, Forests and People, 2020, 2, 100010.	1.9	1
150	Use of the Terms "Base Cation―and "Base Saturation―Should be Discouraged. Soil Science Society of America Journal, 1987, 51, 1089-1090.	2.2	1
151	Another Compendium on Nitrogen Fixation. Ecology, 1983, 64, 215-215.	3.2	0
152	Progress in Succession. Ecology, 1983, 64, 410-411.	3.2	0
153	Acidic deposition: Its nature and impacts. Forest Ecology and Management, 1993, 60, 355-356.	3.2	O
154	Balancing act: Environmental issues in forestry. Forest Ecology and Management, 1994, 68, 404-405.	3.2	0
155	Management of nutrition in forests under stress. Forest Ecology and Management, 1994, 68, 405-406.	3.2	O
156	Boreal forests and global change. Forest Ecology and Management, 1997, 93, 261.	3.2	0
157	Perspectives: Managing forests ecologically, the balancing acts of Hamish Kimmins. Forest Ecology and Management, 2022, 506, 119946.	3.2	0
158	Spacing and geometric layout effects on the productivity of clonal Eucalyptus plantations. Trees, Forests and People, 2022, 8, 100235.	1.9	0