
Joseph Alexander Christie-Oleza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2870091/publications.pdf

Version: 2024-02-01

JOSEPH ALEXANDER

#	Article	IF	CITATIONS
1	Lost, but Found with Nile Red: A Novel Method for Detecting and Quantifying Small Microplastics (1) Tj ETQq1	1 0.78431 10.0	4 rgBT /Over
2	Distribution of plastic polymer types in the marine environment; A meta-analysis. Journal of Hazardous Materials, 2019, 369, 691-698.	12.4	508
3	Marine Plastic Debris: A New Surface for Microbial Colonization. Environmental Science & Technology, 2020, 54, 11657-11672.	10.0	259
4	Understanding microbial community dynamics to improve optimal microbiome selection. Microbiome, 2019, 7, 85.	11.1	233
5	Nutrient recycling facilitates long-term stability of marine microbial phototroph–heterotroph interactions. Nature Microbiology, 2017, 2, 17100.	13.3	181
6	Proteomic insights into the lifestyle of an environmentally relevant marine bacterium. ISME Journal, 2012, 6, 124-135.	9.8	100
7	Plasticizer Degradation by Marine Bacterial Isolates: A Proteogenomic and Metabolomic Characterization. Environmental Science & Technology, 2020, 54, 2244-2256.	10.0	97
8	Early Colonization of Weathered Polyethylene by Distinct Bacteria in Marine Coastal Seawater. Microbial Ecology, 2020, 79, 517-526.	2.8	96
9	Environmental fate of microplastics in the world's third-largest river: Basin-wide investigation and microplastic community analysis. Water Research, 2022, 210, 118002.	11.3	96
10	Exoproteomics: exploring the world around biological systems. Expert Review of Proteomics, 2012, 9, 561-575.	3.0	80
11	Comparative Proteogenomics of Twelve Roseobacter Exoproteomes Reveals Different Adaptive Strategies Among These Marine Bacteria. Molecular and Cellular Proteomics, 2012, 11, M111.013110.	3.8	73
12	Bacterial Community Dynamics during Bioremediation of Diesel Oil-Contaminated Antarctic Soil. Microbial Ecology, 2009, 57, 598-610.	2.8	61
13	Characterization of bacterial consortia from diesel-contaminated Antarctic soils: Towards the design of tailored formulas for bioaugmentation. International Biodeterioration and Biodegradation, 2013, 77, 22-30.	3.9	55
14	Functional distinctness in the exoproteomes of marine <scp><i>S</i></scp> <i>ynechococcus</i> . Environmental Microbiology, 2015, 17, 3781-3794.	3.8	55
15	Beyond oil degradation: enzymatic potential of <i>Alcanivorax</i> to degrade natural and synthetic polyesters. Environmental Microbiology, 2020, 22, 1356-1369.	3.8	53
16	In-Depth Analysis of Exoproteomes from Marine Bacteria by Shotgun Liquid Chromatography-Tandem Mass Spectrometry: the Ruegeria pomeroyi DSS-3 Case-Study. Marine Drugs, 2010, 8, 2223-2239.	4.6	52
17	"You produce while I clean upâ€, a strategy revealed by exoproteomics during <i>Synechococcus</i> – <i>Roseobacter</i> interactions. Proteomics, 2015, 15, 3454-3462.	2.2	50
18	A multi-OMIC characterisation of biodegradation and microbial community succession within the PET plastisphere. Microbiome, 2021, 9, 141.	11.1	49

2

JOSEPH ALEXANDER

#	Article	IF	CITATIONS
19	High-throughput proteogenomics of Ruegeria pomeroyi: seeding a better genomic annotation for the whole marine Roseobacter clade. BMC Genomics, 2012, 13, 73.	2.8	38
20	N-Terminal-oriented Proteogenomics of the Marine Bacterium Roseobacter Denitrificans Och114 using and Diagonal Chromatography. Molecular and Cellular Proteomics, 2014, 13, 1369-1381.	3.8	37
21	A mechanistic understanding of polyethylene biodegradation by the marine bacterium Alcanivorax. Journal of Hazardous Materials, 2022, 436, 129278.	12.4	34
22	Riding the wave of genomics to investigate aquatic coliphage diversity and activity. Environmental Microbiology, 2019, 21, 2112-2128.	3.8	33
23	Mechanisms of silver nanoparticle toxicity on the marine cyanobacterium Prochlorococcus under environmentally-relevant conditions. Science of the Total Environment, 2020, 747, 141229.	8.0	31
24	Microbial pioneers of plastic colonisation in coastal seawaters. Marine Pollution Bulletin, 2022, 179, 113701.	5.0	31
25	Environmentally relevant concentrations of titanium dioxide nanoparticles pose negligible risk to marine microbes. Environmental Science: Nano, 2021, 8, 1236-1255.	4.3	29
26	Genome of Alcanivorax sp. 24: A hydrocarbon degrading bacterium isolated from marine plastic debris. Marine Genomics, 2020, 49, 100686.	1.1	28
27	A widely distributed phosphate-insensitive phosphatase presents a route for rapid organophosphorus remineralization in the biosphere. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	26
28	Shotgun nanoLCâ€MS/MS proteogenomics to document MALDIâ€TOF biomarkers for screening new members of the <i>Ruegeria</i> genus. Environmental Microbiology, 2013, 15, 133-147.	3.8	25
29	A Novel Ca2+ Signaling Pathway Coordinates Environmental Phosphorus Sensing and Nitrogen Metabolism in Marine Diatoms. Current Biology, 2021, 31, 978-989.e4.	3.9	24
30	Proteomics meets blue biotechnology: A wealth of novelties and opportunities. Marine Genomics, 2014, 17, 35-42.	1.1	23
31	Pili allow dominant marine cyanobacteria to avoid sinking and evade predation. Nature Communications, 2021, 12, 1857.	12.8	22
32	Cell size matters: Nano- and micro-plastics preferentially drive declines of large marine phytoplankton due to co-aggregation. Journal of Hazardous Materials, 2022, 424, 127488.	12.4	20
33	100 Days of marine <i>Synechococcus</i> – <i>Ruegeria pomeroyi</i> interaction: A detailed analysis of the exoproteome. Environmental Microbiology, 2018, 20, 785-799.	3.8	19
34	Physiological role of NahW, the additional salicylate hydroxylase found in <i>Pseudomonas stutzeri</i> AN10. FEMS Microbiology Letters, 2009, 300, 265-272.	1.8	18
35	Conjugative Interaction Induces Transposition of IS <i>Pst9</i> in <i>Pseudomonas stutzeri</i> AN10. Journal of Bacteriology, 2009, 191, 1239-1247.	2.2	17
36	Phytoplankton trigger the production of cryptic metabolites in the marine actinobacterium <i>Salinispora tropica</i> . Microbial Biotechnology, 2021, 14, 291-306.	4.2	16

JOSEPH ALEXANDER

#	Article	IF	CITATIONS
37	Proteogenomic Definition of Biomarkers for the Large <i>Roseobacter</i> Clade and Application for a Quick Screening of New Environmental Isolates. Journal of Proteome Research, 2013, 12, 5331-5339.	3.7	15
38	TnpR Encoded by an IS <i>Ppu12</i> Isoform Regulates Transposition of Two Different IS <i>L3</i> -Like Insertion Sequences in <i>Pseudomonas stutzeri</i> after Conjugative Interaction. Journal of Bacteriology, 2010, 192, 1423-1432.	2.2	13
39	Investigating the Impact of Cerium Oxide Nanoparticles Upon the Ecologically Significant Marine Cyanobacterium Prochlorococcus. Frontiers in Marine Science, 2021, 8, .	2.5	13
40	Proteomics of the <i>Roseobacter</i> clade, a window to the marine microbiology landscape. Proteomics, 2015, 15, 3928-3942.	2.2	12
41	Manganese Oxide Biomineralization Provides Protection against Nitrite Toxicity in a Cell-Density-Dependent Manner. Applied and Environmental Microbiology, 2019, 85, .	3.1	12
42	ISPst9, an ISL3-like insertion sequence from Pseudomonas stutzeri AN10 involved in catabolic gene inactivation. International Microbiology, 2008, 11, 101-10.	2.4	12
43	Assessing the Exoproteome of Marine Bacteria, Lesson from a RTX-Toxin Abundantly Secreted by Phaeobacter Strain DSM 17395. PLoS ONE, 2014, 9, e89691.	2.5	10
44	Draft Genome Sequence of Citreicella aestuarii Strain 357, a Member of the Roseobacter Clade Isolated without Xenobiotic Pressure from a Petroleum-Polluted Beach. Journal of Bacteriology, 2012, 194, 5464-5465.	2.2	5
45	MiniUIB, a Novel Minitransposon-Based System for Stable Insertion of Foreign DNA into the Genomes of Gram-Negative and Gram-Positive Bacteria. Applied and Environmental Microbiology, 2013, 79, 1629-1638.	3.1	1
46	Defining a Pipeline for Metaproteomic Analyses. Springer Protocols, 2015, , 99-110.	0.3	1