Greg A Somerville

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2869940/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	At the Crossroads of Bacterial Metabolism and Virulence Factor Synthesis in Staphylococci. Microbiology and Molecular Biology Reviews, 2009, 73, 233-248.	2.9	313
2	Quorum‣ensing Control of Biofilm Factors inStaphylococcus epidermidis. Journal of Infectious Diseases, 2003, 188, 706-718.	1.9	296
3	Global differential gene expression in response to growth temperature alteration in group A Streptococcus. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10416-10421.	3.3	195
4	Direct Targets of CodY in <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2010, 192, 2861-2877.	1.0	181
5	Staphylococcal response to oxidative stress. Frontiers in Cellular and Infection Microbiology, 2012, 2, 33.	1.8	174
6	Progress toward Characterization of the Group AStreptococcusMetagenome: Complete Genome Sequence of a Macrolideâ€Resistant Serotype M6 Strain. Journal of Infectious Diseases, 2004, 190, 727-738.	1.9	172
7	<i>Staphylococcus aureus</i> CodY Negatively Regulates Virulence Gene Expression. Journal of Bacteriology, 2008, 190, 2257-2265.	1.0	168
8	In Vitro Serial Passage of <i>Staphylococcus aureus</i> : Changes in Physiology, Virulence Factor Production, and <i>agr</i> Nucleotide Sequence. Journal of Bacteriology, 2002, 184, 1430-1437.	1.0	166
9	Staphylococcus aureus Aconitase Inactivation Unexpectedly Inhibits Post-Exponential-Phase Growth and Enhances Stationary-Phase Survival. Infection and Immunity, 2002, 70, 6373-6382.	1.0	159
10	Staphylococcus aureus Biofilm Metabolism and the Influence of Arginine on Polysaccharide Intercellular Adhesin Synthesis, Biofilm Formation, and Pathogenesis. Infection and Immunity, 2007, 75, 4219-4226.	1.0	123
11	Correlation of Acetate Catabolism and Growth Yield in Staphylococcus aureus : Implications for Host-Pathogen Interactions. Infection and Immunity, 2003, 71, 4724-4732.	1.0	117
12	Regulating the Intersection of Metabolism and Pathogenesis in Gram-positive Bacteria. Microbiology Spectrum, 2015, 3, .	1.2	110
13	Synthesis and Deformylation of Staphylococcus aureus δ-Toxin Are Linked to Tricarboxylic Acid Cycle Activity. Journal of Bacteriology, 2003, 185, 6686-6694.	1.0	107
14	Staphylococcus epidermidis Polysaccharide Intercellular Adhesin Production Significantly Increases during Tricarboxylic Acid Cycle Stress. Journal of Bacteriology, 2005, 187, 2967-2973.	1.0	102
15	Staphylococcus aureus ClpC Is Required for Stress Resistance, Aconitase Activity, Growth Recovery, and Death. Journal of Bacteriology, 2005, 187, 4488-4496.	1.0	95
16	Rgg Coordinates Virulence Factor Synthesis and Metabolism in Streptococcus pyogenes. Journal of Bacteriology, 2003, 185, 6016-6024.	1.0	88
17	Staphylococcus aureus Metabolic Adaptations during the Transition from a Daptomycin Susceptibility Phenotype to a Daptomycin Nonsusceptibility Phenotype. Antimicrobial Agents and Chemotherapy, 2015, 59, 4226-4238.	1.4	75
18	Tricarboxylic Acid Cycle-Dependent Regulation of <i>Staphylococcus epidermidis</i> Polysaccharide Intercellular Adhesin Synthesis. Journal of Bacteriology, 2008, 190, 7621-7632.	1.0	73

GREG A SOMERVILLE

#	Article	IF	CITATIONS
19	An apoptosis-differentiation program in human polymorphonuclear leukocytes facilitates resolution of inflammation. Journal of Leukocyte Biology, 2003, 73, 315-322.	1.5	69
20	Tricarboxylic Acid Cycle-Dependent Attenuation of <i>Staphylococcus aureus</i> In Vivo Virulence by Selective Inhibition of Amino Acid Transport. Infection and Immunity, 2009, 77, 4256-4264.	1.0	66
21	Glycerol-3-Phosphate Acquisition in Spirochetes: Distribution and Biological Activity of Glycerophosphodiester Phosphodiesterase (GlpQ) among Borrelia Species. Journal of Bacteriology, 2003, 185, 1346-1356.	1.0	65
22	CcpA coordinates central metabolism and biofilm formation in Staphylococcus epidermidis. Microbiology (United Kingdom), 2011, 157, 3458-3468.	0.7	60
23	Physiological Characterization of Pseudomonas aeruginosa during Exotoxin A Synthesis: Glutamate, Iron Limitation, and Aconitase Activity. Journal of Bacteriology, 1999, 181, 1072-1078.	1.0	56
24	Influence of Iron and Aeration on Staphylococcus aureus Growth, Metabolism, and Transcription. Journal of Bacteriology, 2014, 196, 2178-2189.	1.0	55
25	Cultivation conditions and the diffusion of oxygen into culture media: The rationale for the flask-to-medium ratio in microbiology. BMC Microbiology, 2013, 13, 9.	1.3	50
26	RpiR Homologues May Link Staphylococcus aureus RNAIII Synthesis and Pentose Phosphate Pathway Regulation. Journal of Bacteriology, 2011, 193, 6187-6196.	1.0	48
27	A Dysfunctional Tricarboxylic Acid Cycle Enhances Fitness of Staphylococcus epidermidis During β-Lactam Stress. MBio, 2013, 4, .	1.8	48
28	NMR Analysis of a Stress Response Metabolic Signaling Network. Journal of Proteome Research, 2011, 10, 3743-3754.	1.8	46
29	Tricarboxylic Acid Cycle-Dependent Synthesis of <i>Staphylococcus aureus</i> Type 5 and 8 Capsular Polysaccharides. Journal of Bacteriology, 2010, 192, 1459-1462.	1.0	45
30	Using NMR Metabolomics to Investigate Tricarboxylic Acid Cycle-dependent Signal Transduction in Staphylococcus epidermidis. Journal of Biological Chemistry, 2010, 285, 36616-36624.	1.6	45
31	Very Low Ethanol Concentrations Affect the Viability and Growth Recovery in Post-Stationary-Phase Staphylococcus aureus Populations. Applied and Environmental Microbiology, 2006, 72, 2627-2636.	1.4	43
32	Vancomycin-Intermediate Staphylococcus aureus Strains Have Impaired Acetate Catabolism: Implications for Polysaccharide Intercellular Adhesin Synthesis and Autolysis. Antimicrobial Agents and Chemotherapy, 2007, 51, 616-622.	1.4	41
33	Growth Characteristics of Bartonella henselae in a Novel Liquid Medium: Primary Isolation, Growth-Phase-Dependent Phage Induction, and Metabolic Studies. Applied and Environmental Microbiology, 2004, 70, 656-663.	1.4	39
34	Revisiting Protocols for the NMR Analysis of Bacterial Metabolomes. Journal of Integrated OMICS, 2013, 3, 120-137.	0.5	39
35	<i>Staphylococcus aureus</i> ClpC ATPase is a late growth phase effector of metabolism and persistence. Proteomics, 2009, 9, 1152-1176.	1.3	38
36	Catabolite Control Protein E (CcpE) Is a LysR-type Transcriptional Regulator of Tricarboxylic Acid Cycle Activity in Staphylococcus aureus. Journal of Biological Chemistry, 2013, 288, 36116-36128.	1.6	38

GREG A SOMERVILLE

#	Article	IF	CITATIONS
37	<i>Staphylococcus epidermidis saeR</i> Is an Effector of Anaerobic Growth and a Mediator of Acute Inflammation. Infection and Immunity, 2008, 76, 141-152.	1.0	33
38	Metabolic Mitigation of Staphylococcus aureus Vancomycin Intermediate-Level Susceptibility. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	32
39	The Catabolite Control Protein E (CcpE) Affects Virulence Determinant Production and Pathogenesis of Staphylococcus aureus. Journal of Biological Chemistry, 2014, 289, 29701-29711.	1.6	27
40	CcpA Affects Infectivity of Staphylococcus aureus in a Hyperglycemic Environment. Frontiers in Cellular and Infection Microbiology, 2017, 7, 172.	1.8	22
41	Metabolic interventions for the prevention and treatment of daptomycin non-susceptibility in Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2019, 74, 2274-2283.	1.3	22
42	Coordinated regulation of transcription by CcpA and the Staphylococcus aureus two-component system HptRS. PLoS ONE, 2018, 13, e0207161.	1.1	13
43	ClpC affects the intracellular survival capacity of Staphylococcus aureus in non-professional phagocytic cells. Scientific Reports, 2019, 9, 16267.	1.6	13
44	Reductive evolution and the loss of PDC/PAS domains from the genus Staphylococcus. BMC Genomics, 2013, 14, 524.	1.2	12
45	TCA cycle inactivation in Staphylococcus aureus alters nitric oxide production in RAW 264.7 cells. Molecular and Cellular Biochemistry, 2011, 355, 75-82.	1.4	10
46	Cytolytic toxin production by Staphylococcus aureus is dependent upon the activity of the protoheme IX farnesyltransferase. Scientific Reports, 2017, 7, 13744.	1.6	10
47	Impact of the Histidine-Containing Phosphocarrier Protein HPr on Carbon Metabolism and Virulence in Staphylococcus aureus. Microorganisms, 2021, 9, 466.	1.6	9
48	Growth and Preparation of Staphylococcus epidermidis for NMR Metabolomic Analysis. Methods in Molecular Biology, 2014, 1106, 71-91.	0.4	8
49	Metabolic changes associated with adaptive resistance to daptomycin in Streptococcus mitis-oralis. BMC Microbiology, 2020, 20, 162.	1.3	8
50	Identification of Lowâ€Molecularâ€Weight Compounds Inhibiting Growth of Corynebacteria: Potential Lead Compounds for Antibiotics. ChemMedChem, 2014, 9, 282-285.	1.6	3
51	Human Serum Alters the Metabolism and Antibiotic Susceptibility of <i>Staphylococcus aureus</i> . Journal of Proteome Research, 2022, 21, 1467-1474.	1.8	3
52	Regulating the Intersection of Metabolism and Pathogenesis in Gram-positive Bacteria. , 2015, , 129-165.		2
53	Genome Sequence of Streptomyces aureofaciens ATCC Strain 10762. Genome Announcements, 2016, 4, .	0.8	2

54 Staphylococcus aureus Metabolism and Physiology. , 2016, , 107-118.

#	Article	IF	CITATIONS
55	Response to the Letter submitted by R. Brooks Robey. Journal of Leukocyte Biology, 2003, 74, 309-310.	1.5	0
56	Direct Targets of CodY in <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2010, 192, 4258-4258.	1.0	0