HVM Hamelers

List of Publications by Citations

Source: https://exaly.com/author-pdf/2869273/h-v-m-hamelers-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 138 19,575 135 h-index g-index citations papers 6.83 21,486 138 9.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
135	Microbial fuel cells: methodology and technology. <i>Environmental Science & Emp; Technology</i> , 2006 , 40, 5181-92	10.3	4214
134	Microbial electrolysis cells for high yield hydrogen gas production from organic matter. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	932
133	Towards practical implementation of bioelectrochemical wastewater treatment. <i>Trends in Biotechnology</i> , 2008 , 26, 450-9	15.1	921
132	Effects of membrane cation transport on pH and microbial fuel cell performance. <i>Environmental Science & Environmental Science</i>	10.3	603
131	Principle and perspectives of hydrogen production through biocatalyzed electrolysis. <i>International Journal of Hydrogen Energy</i> , 2006 , 31, 1632-1640	6.7	535
130	Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis. Journal of Membrane Science, 2007 , 288, 218-230	9.6	420
129	Hydrogen production with a microbial biocathode. <i>Environmental Science & Environmental Science & Envi</i>	10.3	391
128	Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system. <i>Environmental Science & Environmental Science & En</i>	10.3	372
127	Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. <i>Water Research</i> , 2007 , 41, 1984-94	12.5	315
126	Ammonium recovery and energy production from urine by a microbial fuel cell. <i>Water Research</i> , 2012 , 46, 2627-36	12.5	306
125	Chain Elongation with Reactor Microbiomes: Open-Culture Biotechnology To Produce Biochemicals. <i>Environmental Science & Environmental </i>	10.3	281
124	Copper recovery combined with electricity production in a microbial fuel cell. <i>Environmental Science & Environmental & Enviro</i>	10.3	279
123	Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass. <i>Energy and Environmental Science</i> , 2011 , 4, 216-224	35.4	263
122	A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. <i>Environmental Science & Environmental </i>	10.3	254
121	Effect of temperature on hydrolysis rates of selected biowaste components. <i>Bioresource Technology</i> , 1999 , 69, 249-254	11	234
120	Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. <i>Environmental Science & Environmental Science & Environme</i>	10.3	232
119	Green electricity production with living plants and bacteria in a fuel cell. <i>International Journal of Energy Research</i> , 2008 , 32, 870-876	4.5	225

(2008-2010)

118	Microbial electrolysis cell with a microbial biocathode. <i>Bioelectrochemistry</i> , 2010 , 78, 39-43	5.6	218
117	New applications and performance of bioelectrochemical systems. <i>Applied Microbiology and Biotechnology</i> , 2010 , 85, 1673-85	5.7	204
116	Ion transport resistance in Microbial Electrolysis Cells with anion and cation exchange membranes. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 3612-3620	6.7	199
115	Bioelectrochemical systems: an outlook for practical applications. <i>ChemSusChem</i> , 2012 , 5, 1012-9	8.3	192
114	NH3, N2O and CH4 emissions during passively aerated composting of straw-rich pig manure. <i>Bioresource Technology</i> , 2007 , 98, 2659-70	11	192
113	Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects. <i>Environmental Science & Enurology</i> , 2016 , 50, 12072-12094	10.3	188
112	Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9313	13	186
111	Microbial solar cells: applying photosynthetic and electrochemically active organisms. <i>Trends in Biotechnology</i> , 2011 , 29, 41-9	15.1	181
110	Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater. <i>Water Science and Technology</i> , 2008 , 57, 1757-62	2.2	173
109	Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell. <i>Environmental Science & Environmental Scien</i>	10.3	168
108	Effect of pH and VFA on Hydrolysis of Organic Solid Waste. <i>Journal of Environmental Engineering, ASCE</i> , 2000 , 126, 1076-1081	2	168
107	Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. <i>Electrochimica Acta</i> , 2008 , 53, 5697-5703	6.7	167
106	Analysis and improvement of a scaled-up and stacked microbial fuel cell. <i>Environmental Science & Environmental & Envi</i>	10.3	165
105	Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax. <i>Bioresource Technology</i> , 2010 , 101, 3541-7	11	158
104	Nernst-Planck transport theory for (reverse) electrodialysis: I. Effect of co-ion transport through the membranes. <i>Journal of Membrane Science</i> , 2016 , 510, 370-381	9.6	155
103	Ni foam cathode enables high volumetric H2 production in a microbial electrolysis cell. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 12716-12723	6.7	153
102	Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives. <i>International Journal of Energy Research</i> , 2012 , 36, 809-819	4.5	147
101	Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). <i>Applied Microbiology and Biotechnology</i> , 2008 , 81, 659-68	5.7	147

100	Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. <i>Environmental Science & Environmental Science & Env</i>	10.3	138
99	Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. <i>Water Research</i> , 2008 , 42, 4059-66	12.5	129
98	Capacitive bioanodes enable renewable energy storage in microbial fuel cells. <i>Environmental Science & Environmental &</i>	10.3	128
97	Long-term performance of a plant microbial fuel cell with Spartina anglica. <i>Applied Microbiology and Biotechnology</i> , 2010 , 86, 973-81	5.7	127
96	Towards implementation of reverse electrodialysis for power generation from salinity gradients. <i>Desalination and Water Treatment</i> , 2010 , 16, 182-193		126
95	Bioelectrochemical Production of Caproate and Caprylate from Acetate by Mixed Cultures. <i>ACS Sustainable Chemistry and Engineering</i> , 2013 , 1, 513-518	8.3	123
94	Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol. <i>Applied Energy</i> , 2014 , 116, 223-229	10.7	120
93	Characterisation of NaOH-extracted humic acids during composting of a biowaste. <i>Bioresource Technology</i> , 2000 , 72, 33-41	11	120
92	Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems. <i>Bioresource Technology</i> , 2011 , 102, 11172-6	11	111
91	Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system. <i>Journal of Membrane Science</i> , 2009 , 330, 65-72	9.6	111
90	Cathode potential and mass transfer determine performance of oxygen reducing biocathodes in microbial fuel cells. <i>Environmental Science & Environmental Science & Environment</i>	10.3	108
89	Exploiting the spontaneous potential of the electrodes used in the capacitive mixing technique for the extraction of energy from salinity difference. <i>Energy and Environmental Science</i> , 2012 , 5, 9870	35.4	107
88	Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell. <i>Applied Microbiology and Biotechnology</i> , 2012 , 94, 537-48	5.7	105
87	Butler-Volmer-Monod model for describing bio-anode polarization curves. <i>Bioresource Technology</i> , 2011 , 102, 381-7	11	105
86	Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production. <i>Bioresource Technology</i> , 2013 , 135, 440-5	11	104
85	Solar energy powered microbial fuel cell with a reversible bioelectrode. <i>Environmental Science</i> & amp; Technology, 2010 , 44, 532-7	10.3	103
84	Effects of ammonium concentration and charge exchange on ammonium recovery from high strength wastewater using a microbial fuel cell. <i>Bioresource Technology</i> , 2011 , 102, 4376-82	11	98
83	Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 9655-9661	6.7	96

(2012-2013)

82	Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an upflow anaerobic filter. <i>Bioresource Technology</i> , 2013 , 136, 735-8	11	95
81	Clean energy generation using capacitive electrodes in reverse electrodialysis. <i>Energy and Environmental Science</i> , 2013 , 6, 643-651	35.4	92
80	Theory of Water Desalination by Porous Electrodes with Immobile Chemical Charge. <i>Colloids and Interface Science Communications</i> , 2015 , 9, 1-5	5.4	92
79	Water Desalination with Wires. Journal of Physical Chemistry Letters, 2012, 3, 1613-8	6.4	90
78	Nernst-Planck transport theory for (reverse) electrodialysis: II. Effect of water transport through ion-exchange membranes. <i>Journal of Membrane Science</i> , 2017 , 531, 172-182	9.6	89
77	(Bio)electrochemical ammonia recovery: progress and perspectives. <i>Applied Microbiology and Biotechnology</i> , 2018 , 102, 3865-3878	5.7	88
76	Identifying charge and mass transfer resistances of an oxygen reducing biocathode. <i>Energy and Environmental Science</i> , 2011 , 4, 5035	35.4	88
75	Promoting chain elongation in mixed culture acidification reactors by addition of ethanol. <i>Biomass and Bioenergy</i> , 2013 , 48, 10-16	5.3	87
74	Sources of Cd, Cu, Pb and Zn in biowaste. Science of the Total Environment, 2002, 300, 87-98	10.2	86
73	Effect of additional charging and current density on the performance of Capacitive energy extraction based on Donnan Potential. <i>Energy and Environmental Science</i> , 2012 , 5, 8642	35.4	85
72	Bipolar membranes: A review on principles, latest developments, and applications. <i>Journal of Membrane Science</i> , 2021 , 617, 118538	9.6	85
71	Effects of high calcium concentrations on the development of methanogenic sludge in upflow anaerobic sludge bed (UASB) reactors. <i>Water Research</i> , 1998 , 32, 1255-1263	12.5	84
70	Stabilizing the baseline current of a microbial fuel cell-based biosensor through overpotential control under non-toxic conditions. <i>Bioelectrochemistry</i> , 2010 , 78, 87-91	5.6	78
69	Selective short-chain carboxylates production: A review of control mechanisms to direct mixed culture fermentations. <i>Critical Reviews in Environmental Science and Technology</i> , 2016 , 46, 592-634	11.1	70
68	On-line detection of toxic components using a microbial fuel cell-based biosensor. <i>Journal of Process Control</i> , 2012 , 22, 1755-1761	3.9	69
67	Use of biocompatible buffers to reduce the concentration overpotential for hydrogen evolution. <i>Environmental Science & Documental Scie</i>	10.3	68
66	Acetate enhances startup of a HEproducing microbial biocathode. <i>Biotechnology and Bioengineering</i> , 2012 , 109, 657-64	4.9	67
65	CAPMIX -Deploying Capacitors for Salt Gradient Power Extraction. <i>Energy Procedia</i> , 2012 , 20, 108-115	2.3	66

64	Performance of metal alloys as hydrogen evolution reaction catalysts in a microbial electrolysis cell. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 10482-10489	6.7	66
63	Electricity generation by a novel design tubular plant microbial fuel cell. <i>Biomass and Bioenergy</i> , 2013 , 51, 60-67	5.3	64
62	Impact of location of CaCO3 precipitation on the development of intact anaerobic sludge. <i>Water Research</i> , 2000 , 34, 437-446	12.5	62
61	Fluidized capacitive bioanode as a novel reactor concept for the microbial fuel cell. <i>Environmental Science & Environmental &</i>	10.3	61
60	Improving quality of composted biowaste to enhance disease suppressiveness of compost-amended, peat-based potting mixes. <i>Soil Biology and Biochemistry</i> , 2005 , 37, 2131-2140	7.5	60
59	High rate heptanoate production from propionate and ethanol using chain elongation. <i>Bioresource Technology</i> , 2013 , 136, 715-8	11	59
58	Hydrogen Gas Recycling for Energy Efficient Ammonia Recovery in Electrochemical Systems. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	56
57	Harvesting Energy from CO2 Emissions. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 31-35	11	56
56	New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell. <i>Bioresource Technology</i> , 2012 , 104, 417-23	11	55
55	The flat-plate plant-microbial fuel cell: the effect of a new design on internal resistances. <i>Biotechnology for Biofuels</i> , 2012 , 5, 70	7.8	55
54	Microbial communities and electrochemical performance of titanium-based anodic electrodes in a microbial fuel cell. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 1069-75	4.8	55
53	Degradation of biomacromolecules during high-rate composting of wheat straw-amended feces. Journal of Environmental Quality, 2001 , 30, 1675-84	3.4	55
52	Load ratio determines the ammonia recovery and energy input of an electrochemical system. <i>Water Research</i> , 2017 , 111, 330-337	12.5	54
51	Influence of membrane type, current and potential on the response to chemical toxicants of a microbial fuel cell based biosensor. <i>Sensors and Actuators B: Chemical</i> , 2012 , 163, 1-7	8.5	54
50	Electricity-mediated biological hydrogen production. <i>Current Opinion in Microbiology</i> , 2010 , 13, 307-15	7.9	54
49	Resilience of roof-top Plant-Microbial Fuel Cells during Dutch winter. <i>Biomass and Bioenergy</i> , 2013 , 51, 1-7	5.3	52
48	Modeling composting kinetics: A review of approaches. <i>Reviews in Environmental Science and Biotechnology</i> , 2004 , 3, 331-342	13.9	52
47	Influence of the thickness of the capacitive layer on the performance of bioanodes in Microbial Fuel Cells. <i>Journal of Power Sources</i> , 2013 , 243, 611-616	8.9	51

46	Performance of a scaled-up Microbial Fuel Cell with iron reduction as the cathode reaction. <i>Journal of Power Sources</i> , 2011 , 196, 7572-7577	8.9	48	
45	The effect of different control mechanisms on the sensitivity and recovery time of a microbial fuel cell based biosensor. <i>Sensors and Actuators B: Chemical</i> , 2012 , 171-172, 816-821	8.5	47	
44	Selective inhibition of methanogenesis to enhance ethanol and n-butyrate production through acetate reduction in mixed culture fermentation. <i>Bioresource Technology</i> , 2009 , 100, 3261-7	11	47	
43	Passively Aerated Composting of Straw-Rich Pig Manure: Effect of Compost Bed Porosity. <i>Compost Science and Utilization</i> , 2002 , 10, 114-128	1.2	47	
42	Gas-permeable hydrophobic tubular membranes for ammonia recovery in bio-electrochemical systems. <i>Environmental Science: Water Research and Technology</i> , 2016 , 2, 261-265	4.2	46	
41	Kinetic models for detection of toxicity in a microbial fuel cell based biosensor. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 3115-20	11.8	46	
40	Effect of hydrogen and carbon dioxide on carboxylic acids patterns in mixed culture fermentation. <i>Bioresource Technology</i> , 2012 , 118, 227-34	11	43	
39	Electrochemical characterization of a supercapacitor flow cell for power production from salinity gradients. <i>Electrochimica Acta</i> , 2012 , 86, 298-304	6.7	40	
38	Solvent-Free CO Capture Using Membrane Capacitive Deionization. <i>Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 9478-9485	10.3	38	
37	Steady-state performance and chemical efficiency of Microbial Electrolysis Cells. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 7201-7208	6.7	38	
36	Effect of mass and charge transport speed and direction in porous anodes on microbial electrolysis cell performance. <i>Bioresource Technology</i> , 2011 , 102, 399-403	11	38	
35	Rhizosphere anode model explains high oxygen levels during operation of a Glyceria maxima PMFC. <i>Bioresource Technology</i> , 2012 , 108, 60-7	11	37	
34	Faster Time Response by the Use of Wire Electrodes in Capacitive Salinity Gradient Energy Systems. Journal of Physical Chemistry C, 2012 , 116, 19203-19210	3.8	37	
33	Electricity production with living plants on a green roof: environmental performance of the plant-microbial fuel cell. <i>Biofuels, Bioproducts and Biorefining</i> , 2013 , 7, 52-64	5.3	35	
32	Impact of wire geometry in energy extraction from salinity differences using capacitive technology. <i>Environmental Science & Environmental Science & E</i>	10.3	34	
31	Analysis of bio-anode performance through electrochemical impedance spectroscopy. <i>Bioelectrochemistry</i> , 2015 , 106, 64-72	5.6	33	
30	Characterization of the internal resistance of a plant microbial fuel cell. <i>Electrochimica Acta</i> , 2012 , 72, 165-171	6.7	33	
29	Effect of toxic components on microbial fuel cell-polarization curves and estimation of the type of toxic inhibition. <i>Biosensors</i> , 2012 , 2, 255-68	5.9	31	

28	Membrane Selectivity Determines Energetic Losses for Ion Transport in Bioelectrochemical Systems. <i>ChemistrySelect</i> , 2017 , 2, 3462-3470	1.8	30
27	Energy from CO2 using capacitive electrodestheoretical outline and calculation of open circuit voltage. <i>Journal of Colloid and Interface Science</i> , 2014 , 418, 200-7	9.3	30
26	Energy from CO2 using capacitive electrodes - a model for energy extraction cycles. <i>Journal of Colloid and Interface Science</i> , 2015 , 442, 103-9	9.3	28
25	Reduction of pH buffer requirement in bioelectrochemical systems. <i>Environmental Science & Environmental Science & Environment</i>	10.3	28
24	Extraction of Energy from Small Thermal Differences near Room Temperature Using Capacitive Membrane Technology. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 356-360	11	26
23	Role of ion exchange membranes and capacitive electrodes in membrane capacitive deionization (MCDI) for CO capture. <i>Journal of Colloid and Interface Science</i> , 2020 , 564, 478-490	9.3	25
22	Selective carboxylate production by controlling hydrogen, carbon dioxide and substrate concentrations in mixed culture fermentation. <i>Bioresource Technology</i> , 2013 , 136, 452-60	11	23
21	Energy-Efficient Ammonia Recovery in an Up-Scaled Hydrogen Gas Recycling Electrochemical System. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 7638-7644	8.3	20
20	Electrochemical Regeneration of Spent Alkaline Absorbent from Direct Air Capture. <i>Environmental Science & Environmental & Env</i>	10.3	14
19	Parallel up-scaling of Capacitive Mixing (CapMix) system enhances the specific performance. <i>Electrochimica Acta</i> , 2016 , 187, 104-112	6.7	14
18	Feasibility Study on Electrochemical Impedance Spectroscopy for Microbial Fuel Cells: Measurement Modes & Data Validation. <i>ECS Transactions</i> , 2008 , 13, 27-41	1	14
17	Revisiting Morrison and Osterle 1965: the efficiency of membrane-based electrokinetic energy conversion. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 324001	1.8	13
16	Advanced bioconversion of biowaste for production of a peat substitute and renewable energy. <i>Bioresource Technology</i> , 2004 , 92, 121-31	11	13
15	Gas-permeable hydrophobic membranes enable transport of CO2 and NH3 to improve performance of bioelectrochemical systems. <i>Environmental Science: Water Research and Technology</i> , 2016 , 2, 743-748	4.2	12
14	Minimal Bipolar Membrane Cell Configuration for Scaling Up Ammonium Recovery. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 17359-17367	8.3	12
13	The RED Fouling Monitor: A novel tool for fouling analysis. <i>Journal of Membrane Science</i> , 2019 , 570-571, 294-302	9.6	12
12	Increase of power output by change of ion transport direction in a plant microbial fuel cell. <i>International Journal of Energy Research</i> , 2013 , 37, 1103-1111	4.5	11
11	Exploiting Donnan Dialysis to enhance ammonia recovery in an electrochemical system. <i>Chemical Engineering Journal</i> , 2020 , 395, 125143	14.7	9

LIST OF PUBLICATIONS

10	Auto Generative Capacitive Mixing for Power Conversion of Sea and River Water by the Use of Membranes. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2013 , 135,	2.6	7
9	New Insights on the Estimation of the Anaerobic Biodegradability of Plant Material: Identifying Valuable Plants for Sustainable Energy Production. <i>Processes</i> , 2020 , 8, 806	2.9	4
8	Donnan Dialysis for scaling mitigation during electrochemical ammonium recovery from complex wastewater. <i>Water Research</i> , 2021 , 201, 117260	12.5	3
7	Auto Generative Capacitive Mixing for Power Conversion of Sea and River Water by the Use of Membranes 2011 ,		2
6	Fouling fractionation in reverse electrodialysis with natural feed waters demonstrates dual media rapid filtration as an effective pre-treatment for fresh water. <i>Desalination</i> , 2021 , 518, 115277	10.3	2
5	Reverse Electrodialysis 2013 , 1		1
4	Electrostatic cooling at electrolyte-electrolyte junctions. <i>Physical Review Research</i> , 2019 , 1,	3.9	1
3	Electrostatic cooling at electrolyte-electrolyte junctions. <i>Physical Review Research</i> , 2019 , 1, Enhanced Phototrophic Biomass Productivity through Supply of Hydrogen Gas. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 861-865	3.9	1
	Enhanced Phototrophic Biomass Productivity through Supply of Hydrogen Gas. <i>Environmental</i>		