
Christopher D Kassotis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2869153/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systematic evidence on migrating and extractable food contact chemicals: Most chemicals detected in food contact materials are not listed for use. Critical Reviews in Food Science and Nutrition, 2023, 63, 9425-9435.	5.4	28
2	Characterization of Per- and Polyfluorinated Alkyl Substances Present in Commercial Anti-fog Products and Their <i>In Vitro</i> Adipogenic Activity. Environmental Science & Technology, 2022, 56, 1162-1173.	4.6	28
3	Nonylphenol Polyethoxylates Enhance Adipose Deposition in Developmentally Exposed Zebrafish. Toxics, 2022, 10, 99.	1.6	7
4	Obesity III: Obesogen assays: Limitations, strengths, and new directions. Biochemical Pharmacology, 2022, 199, 115014.	2.0	14
5	Obesity II: Establishing causal links between chemical exposures and obesity. Biochemical Pharmacology, 2022, 199, 115015.	2.0	62
6	Obesity I: Overview and molecular and biochemical mechanisms. Biochemical Pharmacology, 2022, 199, 115012.	2.0	60
7	On the Utility of ToxCast-Based Predictive Models to Evaluate Potential Metabolic Disruption by Environmental Chemicals. Environmental Health Perspectives, 2022, 130, 57005.	2.8	5
8	Characterization of adipogenic, PPARÎ ³ , and TRÎ ² activities in house dust extracts and their associations with organic contaminants. Science of the Total Environment, 2021, 758, 143707.	3.9	15
9	Endocrine disruptor global policy. Advances in Pharmacology, 2021, 92, 1-34.	1.2	8
10	Reproducibility of adipogenic responses to metabolism disrupting chemicals in the 3T3-L1 pre-adipocyte model system: An interlaboratory study. Toxicology, 2021, 461, 152900.	2.0	14
11	Endocrine disrupting activities and geochemistry of water resources associated with unconventional oil and gas activity. Science of the Total Environment, 2020, 748, 142236.	3.9	13
12	Endocrine-disrupting chemicals: economic, regulatory, and policy implications. Lancet Diabetes and Endocrinology,the, 2020, 8, 719-730.	5.5	141
13	Thyroid Receptor Antagonism of Chemicals Extracted from Personal Silicone Wristbands within a Papillary Thyroid Cancer Pilot Study. Environmental Science & Technology, 2020, 54, 15296-15312.	4.6	14
14	Developmental exposure to a mixture of unconventional oil and gas chemicals: A review of experimental effects on adult health, behavior, and disease. Molecular and Cellular Endocrinology, 2020, 513, 110722.	1.6	14
15	Impacts of food contact chemicals on human health: a consensus statement. Environmental Health, 2020, 19, 25.	1.7	100
16	In Our Backyard: Perceptions About Fracking, Science, and Health by Community Members. New Solutions, 2020, 30, 42-51.	0.6	6
17	Developmental Exposure to a Mixture of Unconventional Oil and Gas Chemicals Increased Risk-Taking Behavior, Activity and Energy Expenditure in Aged Female Mice After a Metabolic Challenge. Frontiers in Endocrinology, 2019, 10, 460.	1.5	11
18	Preconceptional, Gestational, and Lactational Exposure to an Unconventional Oil and Gas Chemical Mixture Alters Energy Expenditure in Adult Female Mice. Frontiers in Endocrinology, 2019, 10, 323.	1.5	11

#	Article	IF	CITATIONS
19	Endocrine-Mediated Mechanisms of Metabolic Disruption and New Approaches to Examine the Public Health Threat. Frontiers in Endocrinology, 2019, 10, 39.	1.5	41
20	Thyroid receptor antagonism as a contributory mechanism for adipogenesis induced by environmental mixtures in 3T3-L1 cells. Science of the Total Environment, 2019, 666, 431-444.	3.9	18
21	Prenatal Exposure to Unconventional Oil and Gas Operation Chemical Mixtures Altered Mammary Gland Development in Adult Female Mice. Endocrinology, 2018, 159, 1277-1289.	1.4	21
22	Endocrine-Disrupting Activities and Organic Contaminants Associated with Oil and Gas Operations in Wyoming Groundwater. Archives of Environmental Contamination and Toxicology, 2018, 75, 247-258.	2.1	21
23	Nonionic Ethoxylated Surfactants Induce Adipogenesis in 3T3-L1 Cells. Toxicological Sciences, 2018, 162, 124-136.	1.4	24
24	Developmental Exposure to a Mixture of 23 Chemicals Associated With Unconventional Oil and Gas Operations Alters the Immune System of Mice. Toxicological Sciences, 2018, 163, 639-654.	1.4	12
25	The high-production volume fungicide pyraclostrobin induces triglyceride accumulation associated with mitochondrial dysfunction, and promotes adipocyte differentiation independent of PPARÎ ³ activation, in 3T3-L1 cells. Toxicology, 2018, 393, 150-159.	2.0	45
26	Chemical Mixtures Isolated from House Dust Disrupt Thyroid Receptor Î ² Signaling. Environmental Science & Technology, 2018, 52, 11857-11864.	4.6	14
27	Unconventional oil and gas chemicals and wastewater-impacted water samples promote adipogenesis via PPARÎ ³ -dependent and independent mechanisms in 3T3-L1 cells. Science of the Total Environment, 2018, 640-641, 1601-1610.	3.9	25
28	Characterization of Adipogenic Chemicals in Three Different Cell Culture Systems: Implications for Reproducibility Based on Cell Source and Handling. Scientific Reports, 2017, 7, 42104.	1.6	46
29	Characterization of Adipogenic Activity of House Dust Extracts and Semi-Volatile Indoor Contaminants in 3T3-L1 Cells. Environmental Science & Technology, 2017, 51, 8735-8745.	4.6	54
30	Endocrine-Disrupting Chemicals and Oil and Natural Gas Operations: Potential Environmental Contamination and Recommendations to Assess Complex Environmental Mixtures. Environmental Health Perspectives, 2016, 124, 256-264.	2.8	68
31	Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site. Science of the Total Environment, 2016, 557-558, 901-910.	3.9	108
32	Inspiring Collaboration. New Solutions, 2016, 26, 360-388.	0.6	29
33	Systematic review of the association between oil and natural gas extraction processes and human reproduction. Fertility and Sterility, 2016, 106, 795-819.	0.5	55
34	Adverse Reproductive and Developmental Health Outcomes Following Prenatal Exposure to a Hydraulic Fracturing Chemical Mixture in Female C57Bl/6 Mice. Endocrinology, 2016, 157, 3469-3481.	1.4	39
35	Parma consensus statement on metabolic disruptors. Environmental Health, 2015, 14, 54.	1.7	174
36	Endocrine-Disrupting Activity of Hydraulic Fracturing Chemicals and Adverse Health Outcomes After Prenatal Exposure in Male Mice. Endocrinology, 2015, 156, 4458-4473.	1.4	82

#	Article	IF	CITATIONS
37	Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species. General and Comparative Endocrinology, 2015, 214, 195-219.	0.8	230
38	Characterization of Missouri surface waters near point sources of pollution reveals potential novel atmospheric route of exposure for bisphenol A and wastewater hormonal activity pattern. Science of the Total Environment, 2015, 524-525, 384-393.	3.9	23
39	Developmental and reproductive effects of chemicals associated with unconventional oil and natural gas operations. Reviews on Environmental Health, 2014, 29, 307-18.	1.1	136
40	Estrogen and Androgen Receptor Activities of Hydraulic Fracturing Chemicals and Surface and Ground Water in a Drilling-Dense Region. Endocrinology, 2014, 155, 897-907.	1.4	159