Wassana Yantasee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2868758/publications.pdf

Version: 2024-02-01

59 papers 4,536 citations

32 h-index 61 g-index

64 all docs

64
docs citations

64 times ranked 5946 citing authors

#	Article	IF	CITATIONS
1	Targeted Nanoparticle for Coâ€delivery of HER2 siRNA and a Taxane to Mirror the Standard Treatment of HER2 < b>+ < /b> Breast Cancer: Efficacy in Breast Tumor and Brain Metastasis. Small, 2022, 18, e2107550.	5.2	23
2	Stimuli-responsive mesoporous silica nanoparticles: A custom-tailored next generation approach in cargo delivery. Materials Science and Engineering C, 2021, 124, 112084.	3.8	27
3	Prognostic and therapeutic role of tumor-infiltrating lymphocyte subtypes in breast cancer. Cancer and Metastasis Reviews, 2021, 40, 519-536.	2.7	56
4	In Situ Tumor Vaccination with Nanoparticle Coâ€Delivering CpG and STAT3 siRNA to Effectively Induce Wholeâ€Body Antitumor Immune Response. Advanced Materials, 2021, 33, e2100628.	11.1	34
5	Tumor Therapy: In Situ Tumor Vaccination with Nanoparticle Coâ€Delivering CpG and STAT3 siRNA to Effectively Induce Wholeâ€Body Antitumor Immune Response (Adv. Mater. 31/2021). Advanced Materials, 2021, 33, 2170244.	11.1	O
6	Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions. Physics in Medicine and Biology, 2020, 65, 21RM02.	1.6	101
7	Augmenting the therapeutic window of radiotherapy: A perspective on molecularly targeted therapies and nanomaterials. Radiotherapy and Oncology, 2020, 150, 225-235.	0.3	12
8	siRNA therapeutics for breast cancer: recent efforts in targeting metastasis, drug resistance, and immune evasion. Translational Research, 2019, 214, 105-120.	2.2	48
9	PLK1 and EGFR targeted nanoparticle as a radiation sensitizer for non-small cell lung cancer. Cancer Letters, 2019, 467, 9-18.	3.2	50
10	Lanthanide-Loaded Nanoparticles as Potential Fluorescent and Mass Probes for High-Content Protein Analysis. Bioengineering, 2019, 6, 23.	1.6	5
11	Selective capture of radionuclides (U, Pu, Th, Am and Co) using functional nanoporous sorbents. Journal of Hazardous Materials, 2019, 366, 677-683.	6.5	19
12	Removal of a gadolinium based contrast agent by a novel sorbent hemoperfusion in a chronic kidney disease (CKD) rodent model. Scientific Reports, 2019, 9, 709.	1.6	4
13	Lyophilization and stability of antibody-conjugated mesoporous silica nanoparticle with cationic polymer and PEG for siRNA delivery. International Journal of Nanomedicine, 2018, Volume 13, 4015-4027.	3.3	48
14	Lack of acquired resistance in HER2-positive breast cancer cells after long-term HER2 siRNA nanoparticle treatment. PLoS ONE, 2018, 13, e0198141.	1.1	17
15	Targeted Treatment of Metastatic Breast Cancer by PLK1 siRNA Delivered by an Antioxidant Nanoparticle Platform. Molecular Cancer Therapeutics, 2017, 16, 763-772.	1.9	44
16	Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biology, 2017, 11, 240-253.	3.9	263
17	Current development of targeted oligonucleotide-based cancer therapies: Perspective on HER2-positive breast cancer treatment. Cancer Treatment Reviews, 2016, 45, 19-29.	3.4	21
18	Therapeutic siRNA for drug-resistant HER2-positive breast cancer. Oncotarget, 2016, 7, 14727-14741.	0.8	29

#	Article	IF	Citations
19	Dermal delivery of HSP47 siRNA with NOX4-modulating mesoporous silica-based nanoparticles for treating fibrosis. Biomaterials, 2015, 66, 41-52.	5 . 7	57
20	Cationic Polymer Modified Mesoporous Silica Nanoparticles for Targeted siRNA Delivery to HER2 ⁺ Breast Cancer. Advanced Functional Materials, 2015, 25, 2646-2659.	7.8	155
21	Nanoporous Sorbent Material as an Oral Phosphate Binder and for Aqueous Phosphate, Chromate, and Arsenate Removal. Journal of Nanomedicine & Nanotechnology, 2014, 05, .	1.1	5
22	Novel Oral Detoxification of Mercury, Cadmium, And Lead with Thiol-Modified Nanoporous Silica. ACS Applied Materials & Samp; Interfaces, 2014, 6, 5483-5493.	4.0	48
23	Improved deposition and deprotection of silane tethered 3,4 hydroxypyridinone (HOPO) ligands on functionalized nanoporous silica. Inorganic Chemistry Communication, 2012, 18, 92-96.	1.8	8
24	IN VITRO AND IN VIVO EVALUATION OF A NOVEL FERROCYANIDE FUNCTIONALIZED NANOPOUROUS SILICA DECORPORATION AGENT FOR CESIUM IN RATS. Health Physics, 2010, 99, 420-429.	0.3	29
25	FUNCTIONAL SORBENTS FOR SELECTIVE CAPTURE OF PLUTONIUM, AMERICIUM, URANIUM, AND THORIUM IN BLOOD. Health Physics, 2010, 99, 413-419.	0.3	24
26	Highâ€Performance, Superparamagnetic, Nanoparticleâ€Based Heavy Metal Sorbents for Removal of Contaminants from Natural Waters. ChemSusChem, 2010, 3, 749-757.	3.6	117
27	Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. Journal of Hazardous Materials, 2010, 182, 225-231.	6.5	338
28	Novel sorbents for removal of gadolinium-based contrast agents in sorbent dialysis and hemoperfusion: preventive approaches to nephrogenic systemic fibrosis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 1-8.	1.7	47
29	Phosphate Removal by Anion Binding on Functionalized Nanoporous Sorbents. Environmental Science & Environmental Science	4.6	165
30	Functionalized Nanoporous Silica for the Removal of Heavy Metals from Biological Systems: Adsorption and Application. ACS Applied Materials & Samp; Interfaces, 2010, 2, 2749-2758.	4.0	115
31	Selective Removal of Copper(II) from Natural Waters by Nanoporous Sorbents Functionalized with Chelating Diamines. Environmental Science & Environment	4.6	97
32	Selective removal of lanthanides from natural waters, acidic streams and dialysate. Journal of Hazardous Materials, 2009, 168, 1233-1238.	6.5	116
33	Synthesis of nanoporous iminodiacetic acid sorbents for binding transition metals. Inorganic Chemistry Communication, 2009, 12, 312-315.	1.8	26
34	Transition metal ion capture using functional mesoporous carbon made with 1,10-phenanthroline. Inorganic Chemistry Communication, 2009, 12, 1099-1103.	1.8	6
35	Detection of Cd, Pb, and Cu in non-pretreated natural waters and urine with thiol functionalized mesoporous silica and Nafion composite electrodes. Analytica Chimica Acta, 2008, 620, 55-63.	2.6	83
36	New functional materials for heavy metal sorption: "Supramolecular―attachment of thiols to mesoporous silica substrates. Chemical Communications, 2008, , 5583.	2.2	32

#	Article	IF	Citations
37	Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles. Analyst, The, 2008, 133, 348.	1.7	100
38	Electrochemical Sensors for the Detection of Lead and Other Toxic Heavy Metals: The Next Generation of Personal Exposure Biomonitors. Environmental Health Perspectives, 2007, 115, 1683-1690.	2.8	139
39	Design and synthesis of self-assembled monolayers on mesoporous supports (SAMMS): The importance of ligand posture in functional nanomaterials. Journal of Materials Chemistry, 2007, 17, 2863.	6.7	108
40	Removal of Heavy Metals from Aqueous Systems with Thiol Functionalized Superparamagnetic Nanoparticles. Environmental Science & Environmental Science	4.6	626
41	Voltammetric analysis of europium at screen-printed electrodes modified with salicylamide self-assembled on mesoporous silica. Analyst, The, 2006, 131, 1342.	1.7	21
42	The dissolution of synthetic Na-boltwoodite in sodium carbonate solutions. Geochimica Et Cosmochimica Acta, 2006, 70, 4836-4849.	1.6	30
43	Templated synthesis of mesoporous titanium phosphates for the sequestration of radionuclides. Inorganic Chemistry Communication, 2006, 9, 293-295.	1.8	27
44	Microanalyzer for biomonitoring lead (Pb) in blood and urine. Analytical and Bioanalytical Chemistry, 2006, 387, 335-341.	1.9	22
45	Hydroxypyridinone Functionalized Self-Assembled Monolayers on Nanoporous Silica for Sequestering Lanthanide Cations. Journal of Nanoscience and Nanotechnology, 2005, 5, 527-529.	0.9	29
46	Screen-printed electrodes modified with functionalized mesoporous silica for voltammetric analysis of toxic metal ions. Electrochemistry Communications, 2005, 7, 1170-1176.	2.3	63
47	Incorporation of Hydroxypyridinone Ligands into Self-Assembled Monolayers on Mesoporous Supports for Selective Actinide Sequestration. Environmental Science & Environmental Science, 2005, 39, 1332-1337.	4.6	79
48	Nanostructured Electrochemical Sensors Based on Functionalized Nanoporous Silica for Voltammetric Analysis of Lead, Mercury, and Copper. Journal of Nanoscience and Nanotechnology, 2005, 5, 1537-1540.	0.9	31
49	Fluorescence spectroscopy of U(VI)-silicates and U(VI)-contaminated Hanford sediment. Geochimica Et Cosmochimica Acta, 2005, 69, 1391-1403.	1.6	136
50	Optimization of a portable microanalytical system to reduce electrode fouling from proteins associated with biomonitoring of lead (Pb) in saliva. Talanta, 2005, 67, 617-624.	2.9	18
51	Automated portable analyzer for lead(II) based on sequential flow injection and nanostructured electrochemical sensors. Talanta, 2005, 68, 256-261.	2.9	33
52	Electrochemical Sensor Based on Carbon Paste Electrode Modified with Nanostructured Cryptomelane-Type Manganese Oxides for Detection of Heavy Metals. Sensor Letters, 2005, 3, 16-21.	0.4	6
53	Carbon Paste Electrode Modified with Carbamoylphosphonic Acid Functionalized Mesoporous Silica: A New Mercury-Free Sensor for Uranium Detection. Electroanalysis, 2004, 16, 870-873.	1.5	46
54	Simultaneous detection of cadmium, copper, and lead using a carbon paste electrode modified with carbamoylphosphonic acid self-assembled monolayer on mesoporous silica (SAMMS). Analytica Chimica Acta, 2004, 502, 207-212.	2.6	148

#	Article	IF	CITATION
55	Selective Removal of Copper(II) from Aqueous Solutions Using Fine-Grained Activated Carbon Functionalized with Amine. Industrial & Engineering Chemistry Research, 2004, 43, 2759-2764.	1.8	121
56	Cryogenic Laser Induced Fluorescence Characterization of U(VI) in Hanford Vadose Zone Pore Waters. Environmental Science & Env	4.6	164
57	Removal of Heavy Metals from Aqueous Solution Using Novel Nanoengineered Sorbents: Selfâ€Assembled Carbamoylphosphonic Acids on Mesoporous Silica. Separation Science and Technology, 2003, 38, 3809-3825.	1.3	75
58	Voltammetric detection of lead(ii) and mercury(ii) using a carbon paste electrode modified with thiol self-assembled monolayer on mesoporous silica (SAMMS). Analyst, The, 2003, 128, 467-472.	1.7	170
59	Nanoengineered electrochemical sensor based on mesoporous silica thin-film functionalized with thiol-terminated monolayer. Analyst, The, 2003, 128, 899.	1.7	70