
Yves Barral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2868744/publications.pdf Version: 2024-02-01

YVES RADDAL

#	Article	IF	CITATIONS
1	Whi3 mnemon association with endoplasmic reticulum membranes confines the memory of deceptive courtship to the yeast mother cell. Current Biology, 2022, 32, 963-974.e7.	1.8	7
2	DNA circles promote yeast ageing in part through stimulating the reorganization of nuclear pore complexes. ELife, 2022, 11, .	2.8	11
3	Surface tensiometry of phase separated protein and polymer droplets by the sessile drop method. Soft Matter, 2021, 17, 1655-1662.	1.2	32
4	Demixing the cell: how cells channel and store signaling information. Current Opinion in Cell Biology, 2021, 69, iii-v.	2.6	0
5	Asymmetric cell division shapes naive and virtual memory T-cell immunity during ageing. Nature Communications, 2021, 12, 2715.	5.8	19
6	Structure and regulation of the microtubule plus-end tracking protein Kar9. Structure, 2021, 29, 1266-1278.e4.	1.6	5
7	Mapping bilayer thickness in the ER membrane. Science Advances, 2020, 6, .	4.7	26
8	Yeast Sporulation and [SMAUG+] Prion: Faster Is Not Always Better. Molecular Cell, 2020, 77, 203-204.	4.5	2
9	Yeast ceramide synthases, Lag1 and Lac1, have distinct substrate specificity. Journal of Cell Science, 2019, 132, .	1.2	26
10	Modulation of asymmetric cell division as a mechanism to boost CD8 ⁺ T cell memory. Science Immunology, 2019, 4, .	5.6	42
11	Remote control of microtubule plus-end dynamics and function from the minus-end. ELife, 2019, 8, .	2.8	23
12	Structure-Function Relationship of the Bik1-Bim1 Complex. Structure, 2018, 26, 607-618.e4.	1.6	18
13	Spatial cues and not spindle pole maturation drive the asymmetry of astral microtubules between new and preexisting spindle poles. Molecular Biology of the Cell, 2018, 29, 10-28.	0.9	23
14	Centromeres License the Mitotic Condensation of Yeast Chromosome Arms. Cell, 2018, 175, 780-795.e15.	13.5	37
15	Asymmetric Segregation of Aged Spindle Pole Bodies During Cell Division: Mechanisms and Relevance Beyond Budding Yeast?. BioEssays, 2018, 40, e1800038.	1.2	15
16	Compartmentalization of ER-Bound Chaperone Confines Protein Deposit Formation to the Aging Yeast Cell. Current Biology, 2017, 27, 773-783.	1.8	54
17	Aggregation of the Whi3 protein, not loss of heterochromatin, causes sterility in old yeast cells. Science, 2017, 355, 1184-1187.	6.0	51
18	Budding yeast Wee1 distinguishes spindle pole bodies to guide their pattern of age-dependent segregation. Nature Cell Biology, 2017, 19, 941-951.	4.6	24

YVES BARRAL

#	Article	IF	CITATIONS
19	A Droplet to Sense Sugar Drops. Molecular Cell, 2017, 68, 1017-1019.	4.5	1
20	Heat stress promotes longevity in budding yeast by relaxing the confinement of age-promoting factors in the mother cell. ELife, 2017, 6, .	2.8	27
21	Protein aggregation as a mechanism of adaptive cellular responses. Current Genetics, 2016, 62, 711-724.	0.8	64
22	Compartmentalization of the endoplasmic reticulum in the early <i>C. elegans</i> embryos. Journal of Cell Biology, 2016, 214, 665-676.	2.3	17
23	Molecular basis of Kar9-Bim1 complex function during mating and spindle positioning. Molecular Biology of the Cell, 2016, 27, 3729-3745.	0.9	17
24	Asymmetric partitioning of transfected DNA during mammalian cell division. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7177-7182.	3.3	35
25	Posttranslational Regulation: A Way to Evolve. Current Biology, 2016, 26, R119-R121.	1.8	Ο
26	Fluorescence Recovery After Photo-Bleaching (FRAP) and Fluorescence Loss in Photo-Bleaching (FLIP) Experiments to Study Protein Dynamics During Budding Yeast Cell Division. Methods in Molecular Biology, 2016, 1369, 25-44.	0.4	9
27	Asymmetry of the Budding Yeast Tem1 GTPase at Spindle Poles Is Required for Spindle Positioning But Not for Mitotic Exit. PLoS Genetics, 2015, 11, e1004938.	1.5	26
28	Rho1- and Pkc1-dependent phosphorylation of the F-BAR protein Syp1 contributes to septin ring assembly. Molecular Biology of the Cell, 2015, 26, 3245-3262.	0.9	21
29	A mechanism for the segregation of age in mammalian neural stem cells. Science, 2015, 349, 1334-1338.	6.0	129
30	Protein aggregates are associated with replicative aging without compromising protein quality control. ELife, 2015, 4, .	2.8	117
31	Axial contraction and short-range compaction of chromatin synergistically promote mitotic chromosome condensation. ELife, 2015, 4, e1039.	2.8	37
32	The Mitotic Exit Network: new turns on old pathways. Trends in Cell Biology, 2014, 24, 145-152.	3.6	50
33	Budding yeast as a model organism to study the effects of age. FEMS Microbiology Reviews, 2014, 38, 300-325.	3.9	189
34	A Cascade of Histone Modifications Induces Chromatin Condensation in Mitosis. Science, 2014, 343, 77-80.	6.0	223
35	Mnemons: encoding memory by protein super-assembly. Microbial Cell, 2014, 1, 100-102.	1.4	15
36	A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell. ELife, 2014, 3, e01883.	2.8	134

Yves Barral

#	Article	IF	CITATIONS
37	Role of SAGA in the asymmetric segregation of DNA circles during yeast ageing. ELife, 2014, 3, .	2.8	91
38	A Super-Assembly of Whi3 Encodes Memory of Deceptive Encounters by Single Cells during Yeast Courtship. Cell, 2013, 155, 1244-1257.	13.5	124
39	Unbiased about chromosome segregation: give me a mechanism and I will make you "immortal― Chromosome Research, 2013, 21, 189-191.	1.0	1
40	New approaches to an age-old problem. Current Opinion in Biotechnology, 2013, 24, 784-789.	3.3	4
41	The cell biology of open and closed mitosis. Nucleus, 2013, 4, 160-165.	0.6	77
42	A new answer to old questions. ELife, 2013, 2, e00515.	2.8	5
43	Budding Yeast Dma Proteins Control Septin Dynamics and the Spindle Position Checkpoint by Promoting the Recruitment of the Elm1 Kinase to the Bud Neck. PLoS Genetics, 2012, 8, e1002670.	1.5	25
44	Nuclear envelope morphology constrains diffusion and promotes asymmetric protein segregation in closed mitosis. Journal of Cell Biology, 2012, 197, 921-937.	2.3	47
45	Organelle segregation during mitosis: Lessons from asymmetrically dividing cells. Journal of Cell Biology, 2012, 196, 305-313.	2.3	51
46	The MEN mediates the effects of the spindle assembly checkpoint on Kar9-dependent spindle pole body inheritance in budding yeast. Cell Cycle, 2012, 11, 3109-3116.	1.3	17
47	Spindle Pole Bodies Exploit the Mitotic Exit Network in Metaphase to Drive Their Age-Dependent Segregation. Cell, 2012, 148, 958-972.	13.5	61
48	The emerging functions of septins in metazoans. EMBO Reports, 2011, 12, 1118-1126.	2.0	111
49	A Midzone-Based Ruler Adjusts Chromosome Compaction to Anaphase Spindle Length. Science, 2011, 332, 465-468.	6.0	87
50	Septins at the Nexus. Science, 2010, 329, 1289-1290.	6.0	11
51	A mechanism for chromosome segregation sensing by the NoCut checkpoint. Nature Cell Biology, 2009, 11, 477-483.	4.6	118
52	Septins and the Lateral Compartmentalization of Eukaryotic Membranes. Developmental Cell, 2009, 16, 493-506.	3.1	260
53	Chapter 4 Role of Spindle Asymmetry in Cellular Dynamics. International Review of Cell and Molecular Biology, 2009, 278, 149-213.	1.6	16
54	A mechanism for asymmetric segregation of age during yeast budding. Nature, 2008, 454, 728-734.	13.7	298

Yves Barral

#	Article	IF	CITATIONS
55	The septin family of GTPases: architecture and dynamics. Nature Reviews Molecular Cell Biology, 2008, 9, 478-489.	16.1	290
56	Structural insights shed light onto septin assemblies and function. Current Opinion in Cell Biology, 2008, 20, 12-18.	2.6	53
57	Cell division, growth and death. Current Opinion in Cell Biology, 2008, 20, 647-649.	2.6	1
58	Regulation of Mitotic Spindle Asymmetry by SUMO and the Spindle-Assembly Checkpoint in Yeast. Current Biology, 2008, 18, 1249-1255.	1.8	39
59	The Caenorhabditis elegans septin complex is nonpolar. EMBO Journal, 2007, 26, 3296-3307.	3.5	130
60	Septins: Cellular and Functional Barriers of Neuronal Activity. Current Biology, 2007, 17, R961-R963.	1.8	18
61	Asymmetric Recruitment of Dynein to Spindle Poles and Microtubules Promotes Proper Spindle Orientation in Yeast. Developmental Cell, 2006, 10, 425-439.	3.1	76
62	Division-Plane Positioning: Microtubules Strike Back. Current Biology, 2005, 15, R595-R597.	1.8	0
63	Septin-dependent compartmentalization of the endoplasmic reticulum during yeast polarized growth. Journal of Cell Biology, 2005, 169, 897-908.	2.3	145
64	Spatial Coordination of Cytokinetic Events by Compartmentalization of the Cell Cortex. Science, 2004, 305, 393-396.	6.0	261
65	Dissection of septin actin interactions using actin overexpression in Saccharomyces cerevisiae. Molecular Microbiology, 2004, 53, 469-483.	1.2	22
66	Spindle asymmetry: a compass for the cell. Trends in Cell Biology, 2003, 13, 562-569.	3.6	64
67	Asymmetric Loading of Kar9 onto Spindle Poles and Microtubules Ensures Proper Spindle Alignment. Cell, 2003, 112, 561-574.	13.5	238
68	Phosphorylation-Dependent Regulation of Septin Dynamics during the Cell Cycle. Developmental Cell, 2003, 4, 345-357.	3.1	221
69	Spindle orientation in Saccharomyces cerevisiae depends on the transport of microtubule ends along polarized actin cables. Journal of Cell Biology, 2003, 161, 483-488.	2.3	170
70	Microtubule capture by the cleavage apparatus is required for proper spindle positioning in yeast. Genes and Development, 2002, 16, 1627-1639.	2.7	132
71	Septins: a ring to part mother and daughter. Current Genetics, 2002, 41, 123-131.	0.8	111
72	Compartmentalization of the Cell Cortex by Septins Is Required for Maintenance of Cell Polarity in Yeast. Molecular Cell, 2000, 5, 841-851.	4.5	285

#	Article	IF	CITATIONS
73	Yeast Septins: A Cortical Organizer. , 0, , 101-124.		3