List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/286860/publications.pdf Version: 2024-02-01

<u>۸</u>	DN	41 N	7	

#	Article	IF	CITATIONS
1	Integrated geological-geophysical investigation of gold-hosting Rhyacian intrusions (Yaou, French) Tj ETQq1 1 0.78	84314 rgB 1.4	3T5/Overloc
2	Zircon U-Pb-Hf isotope systematics of Limpopo Belt quartzites and igneous rocks, implications for Kaapvaal – Zimbabwe Craton accretion. Precambrian Research, 2022, 373, 106631.	2.7	8
3	Downdip Development of the Ni-Cu-PGE-Bearing Mafic to Ultramafic Uitkomst Complex, Mpumalanga Province, South Africa. Minerals (Basel, Switzerland), 2022, 12, 22.	2.0	0
4	Unconformityâ€covering pillow lava dated at 2.14 Ga: Challenging the "stableâ€shelf―Minas Supergrouµ of the Quadrilátero FerrÃfero, Minas Gerais, Brazil. Geological Journal, 2022, 57, 2046-2057.	⁰ 1.3	3
5	Lu-Hf Isotopic Data of the Mbé-Sassa-Mbersi Tonalite (Central Cameroon Domain): Indicator of ca. 1.0 Ga Juvenile Tonian Magmatism in the Region. Journal of Geoscience and Environment Protection, 2021, 09, 1-19.	0.5	2
6	Hybrid granite magmatism during orogenic collapse in the Eastern Desert of Egypt: Inferences from whole-rock geochemistry and zircon U–Pb–Hf isotopes. Precambrian Research, 2021, 354, 106044.	2.7	20
7	Archean to Proterozoic (3535–900ÂMa) crustal evolution of the central Aravalli Banded Gneissic Complex, NW India: New constraints from zircon U-Pb-Hf isotopes and geochemistry. Precambrian Research, 2021, 359, 106179.	2.7	16
8	U-Pb-Hf isotopic systematics of zircons from granites and metasediments of southern OuaddaÃ ⁻ (Chad), implications for crustal evolution and provenance in the Central Africa Orogenic Belt. Precambrian Research, 2021, 361, 106233.	2.7	10
9	Combining detrital zircon shape and U–Pb–Hf isotope analyses for provenance studies – An example from the Aquiri region, Amazon Craton, Brazil. Precambrian Research, 2021, 364, 106343.	2.7	10
10	Zircon of Triassic Age in the Stuttgart Formation (Schilfsandstein)—Witness of Tephra Fallout in the Central European Basin and New Constraints on the Mid-Carnian Episode. Frontiers in Earth Science, 2021, 9, .	1.8	1
11	First evidence for Neoproterozoic magmatism in the Quadrilátero FerrÃfero of Minas Gerais, Brazil, and geotectonic implications. Journal of South American Earth Sciences, 2020, 104, 102844.	1.4	7
12	Zircon U-Pb-Hf isotope systematics of Transvaal Supergroup – Constraints for the geodynamic evolution of the Kaapvaal Craton and its hinterland between 2.65 and 2.06ÂGa. Precambrian Research, 2020, 345, 105760.	2.7	26
13	Silicate-Carbonate Liquid Immiscibility: Insights from the Crevier Alkaline Intrusion (Quebec). Journal of Petrology, 2020, 61, .	2.8	13
14	First Evidence of Late Paleoproterozoic/Early Mesoproterozoic Sediment Deposition and Magmatism in the Central Aravalli Orogen (NW India). Journal of Geology, 2020, 128, 109-129.	1.4	18
15	Monazite and cassiterite U Pb dating of the Abu Dabbab rare-metal granite, Egypt: Late Cryogenian metalliferous granite magmatism in the Arabian-Nubian Shield. Gondwana Research, 2020, 84, 71-80.	6.0	44
16	Neoproterozoic magmatic evolution of the southern OuaddaÃ ⁻ Massif (Chad). Bulletin - Societie Geologique De France, 2020, 191, 34.	2.2	5
17	U–Pb age and Hf isotope record of detrital zircon grains from the North Delhi Supergroup, NW India: implications for provenance and stratigraphic correlations. International Journal of Earth Sciences, 2019, 108, 2683-2697.	1.8	9
18	Molybdenum-isotope signals and cerium anomalies in Palaeoproterozoic manganese ore survive high-grade metamorphism. Scientific Reports, 2019, 9, 4570.	3.3	21

#	Article	IF	CITATIONS
19	Archean crustal evolution of the Aravalli Banded Gneissic Complex, NW India: Constraints from zircon U-Pb ages, Lu-Hf isotope systematics, and whole-rock geochemistry of granitoids. Precambrian Research, 2019, 327, 81-102.	2.7	47
20	Granitoids and Greenstone Belts of the Pietersburg Block—Witnesses of an Archaean Accretionary Orogen Along the Northern Edge of the Kaapvaal Craton. Regional Geology Reviews, 2019, , 83-107.	1.2	15
21	Petrogenesis of LREE-rich pegmatitic granite dykes in the central Grenville Province by partial melting of Paleoproterozoic-Archean metasedimentary rocks: Evidence from zircon U-Pb-Hf-O isotope and trace element analyses. Precambrian Research, 2019, 327, 327-360.	2.7	18
22	Hafnium Isotopic Composition of the Bushveld Complex Requires Mantle Melt–Upper Crust Mixing: New Evidence from Zirconology of Mafic, Felsic and Metasedimentary Rocks. Journal of Petrology, 2019, 60, 2169-2200.	2.8	18
23	Alabandite (MnS) in metamorphosed manganiferous rocks at Morro da Mina, Brazil: palaeoenvironmental significance. European Journal of Mineralogy, 2019, 31, 973-982.	1.3	5
24	The geologic record of the exhumed root of the Central African Orogenic Belt in the central Cameroon domain (Mbé – Sassa-Mbersi region). Journal of African Earth Sciences, 2019, 151, 286-314.	2.0	25
25	Reply to comment by Ngako and Njonfang on "The Adamawa-Yade domain, a piece of Archaean crust in the Neoproterozoic Central African Orogenic belt (Bafia area, Cameroon)â€, by Jacqueline Tchakounté et al., Precambrian Research 299 (2017) 210–229. Precambrian Research, 2018, 305, 516-518.	2.7	3
26	Rutile alteration and authigenic growth in metasandstones of the Moeda Formation, Minas Gerais, Brazil – A result of Transamazonian fluid–rock interaction. Chemical Geology, 2018, 483, 397-409.	3.3	20
27	Geochronology, stratigraphy and geochemistry of Cambro-Ordovician, Silurian and Devonian volcanic rocks of the Saxothuringian Zone in NE Bavaria (Germany)—new constraints for Gondwana break up and ocean–island magmatism. International Journal of Earth Sciences, 2018, 107, 359-377.	1.8	8
28	Reply to comment by M. Bouyo on "The Adamawa–Yade domain, a piece of Archaean crust in the Neoproterozoic Central African Orogenic belt (Bafia area, Cameroon)â€ , by Jacqueline Tchakounté et al., Precambrian Research 299 (2017) 210–229. Precambrian Research, 2018, 305, 514-515.	2.7	3
29	From Cadomian magmatic arc to Rheic ocean closure: The geochronological-geochemical record of nappe protoliths of the Münchberg Massif, NE Bavaria (Germany). Gondwana Research, 2018, 55, 135-152.	6.0	36
30	Protracted, coeval crust and mantle melting during Variscan late-orogenic evolution: U–Pb dating in the eastern French Massif Central. International Journal of Earth Sciences, 2017, 106, 421-451.	1.8	89
31	Geology of the Pitangui greenstone belt, Minas Gerais, Brazil: Stratigraphy, geochronology and BIF geochemistry. Precambrian Research, 2017, 291, 17-41.	2.7	37
32	Palaeoproterozoic continental arc magmatism, and Neoproterozoic metamorphism in the Aravalli-Delhi orogenic belt, NW India: New constraints from in situ zircon U-Pb-Hf isotope systematics, monazite dating and whole-rock geochemistry. Journal of Asian Earth Sciences, 2017, 136, 68-88	2.3	43
33	Pre-Cadomian to late-Variscan odyssey of the eastern Massif Central, France: Formation of the West European crust in a nutshell. Gondwana Research, 2017, 46, 170-190.	6.0	53
34	Platiniferous gold–tourmaline aggregates in the gold–palladium belt of Minas Gerais, Brazil: implications for regional boron metasomatism. Mineralogy and Petrology, 2017, 111, 807-819.	1.1	15
35	Zircon geochronology and Hf isotopes of the Dwalile Supracrustal Suite, Ancient Gneiss Complex, Swaziland: Insights into the diversity of Palaeoarchaean source rocks, depositional and metamorphic ages. Precambrian Research, 2017, 295, 48-66.	2.7	24
36	In Situ Sr isotopes in Plagioclase and Trace Element Systematics in the Lowest Part of the Eastern Bushveld Complex: Dynamic Processes in an Evolving Magma Chamber. Journal of Petrology, 2017, 58, 327-360.	2.8	34

#	Article	IF	CITATIONS
37	Two distinct sources of 1.73–1.70 Ga A-type granites from the northern Aravalli orogen, NW India: Constraints from in situ zircon U-Pb ages and Lu-Hf isotopes. Gondwana Research, 2017, 49, 164-181.	6.0	43
38	New insights into the crustal growth of the Paleoproterozoic margin of the Archean Kéména-Man domain, West African craton (Guinea): Implications for gold mineral system. Precambrian Research, 2017, 292, 258-289.	2.7	66
39	Graphite–(Mo,W)S2 intergrowth as a palaeoenvironmental proxy in metasedimentary rocks. Lithos, 2017, 294-295, 412-417.	1.4	3
40	How do granitoid magmas mix with each other? Insights from textures, trace element and Sr–Nd isotopic composition of apatite and titanite from the Matok pluton (South Africa). Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	62
41	The Adamawa-Yadé domain, a piece of Archaean crust in the Neoproterozoic Central African Orogenic belt (Bafia area, Cameroon). Precambrian Research, 2017, 299, 210-229.	2.7	120
42	Source and age of upper Transvaal Supergroup, South Africa: Age-Hf isotope record of zircons in Magaliesberg quartzite and Dullstroom lava, and implications for Paleoproterozoic (2.5–2.0 Ga) continent reconstruction. Precambrian Research, 2016, 278, 1-21.	2.7	44
43	Lower crust exhumation during Paleoproterozoic (Eburnean) orogeny, NW Chana, West African Craton: Interplay of coeval contractional deformation and extensional gravitational collapse. Precambrian Research, 2016, 274, 82-109.	2.7	58
44	Separating regional metamorphic and metasomatic assemblages and events in the northern Khetri complex, NW India: Evidence from mineralogy, whole-rock geochemistry and U-Pb monazite chronology. Journal of Asian Earth Sciences, 2016, 129, 117-141.	2.3	30
45	Post-collisional magmatism: Crustal growth not identified by zircon Hf–O isotopes. Earth and Planetary Science Letters, 2016, 456, 182-195.	4.4	161
46	Paleoproterozoic juvenile crust formation and stabilisation in the south-eastern West African Craton (Ghana); New insights from U-Pb-Hf zircon data and geochemistry. Precambrian Research, 2016, 287, 1-30.	2.7	54
47	Unravelling the record of Archaean crustal evolution of the Bundelkhand Craton, northern India using U–Pb zircon–monazite ages, Lu–Hf isotope systematics, and whole-rock geochemistry of granitoids. Precambrian Research, 2016, 281, 384-413.	2.7	100
48	Mafic magmatism in the Bakhuis Granulite Belt (western Suriname): relationship with charnockite magmatism and UHT metamorphism. Gff, 2016, 138, 203-218.	1.2	11
49	Tectono-metamorphic evolution of the internal zone of the Pan-African Lufilian orogenic belt (Zambia): Implications for crustal reworking and syn-orogenic uranium mineralizations. Lithos, 2016, 240-243, 167-188.	1.4	27
50	Celebrating the Centenary of "The Geology of Central Minas Gerais, Brazilâ€: An Insight from the SÃŧio Largo Amphibolite. Journal of Geology, 2015, 123, 337-354.	1.4	18
51	The Bushveld Complex was emplaced and cooled in less than one million years – results of zirconology, and geotectonic implications. Earth and Planetary Science Letters, 2015, 418, 103-114.	4.4	218
52	Detrital zircon without detritus: a result of 496-Ma-old fluid–rock interaction during the gold-lode formation of Passagem, Minas Gerais, Brazil. Lithos, 2015, 212-215, 415-427.	1.4	32
53	A linear Hf isotope-age array despite different granitoid sources and complex Archean geodynamics: Example from the Pietersburg block (South Africa). Earth and Planetary Science Letters, 2015, 430, 326-338.	4.4	106
54	The oldest zircons of Africa—Their U–Pb–Hf–O isotope and trace element systematics, and implications for Hadean to Archean crust–mantle evolution. Precambrian Research, 2014, 241, 203-230.	2.7	83

#	Article	IF	CITATIONS
55	Characterisation and U–Pb–Hf isotope record of the 3.55Ga felsic crust from the Bundelkhand Craton, northern India. Precambrian Research, 2014, 255, 236-244.	2.7	87
56	Depositional age and sediment source of the auriferous Moeda Formation, Quadrilátero FerrÃfero of Minas Gerais, Brazil: New constraints from U–Pb–Hf isotopes in zircon and xenotime. Precambrian Research, 2014, 255, 96-108.	2.7	45
57	Timing of deposition and deformation of the Moodies Group (Barberton Greenstone Belt, South) Tj ETQq1 1 0.78	34314 rgB 2.7	T /Overlock 87
58	Nature of magmatism and sedimentation at a Columbia active margin: Insights from combined U–Pb and Lu–Hf isotope data of detrital zircons from NW India. Gondwana Research, 2013, 23, 1040-1052.	6.0	100
59	Juvenile crust formation in the northeastern Kaapvaal Craton at 2.97Ga—Implications for Archean terrane accretion, and the source of the Pietersburg gold. Precambrian Research, 2013, 233, 20-43.	2.7	71
60	The Murchison Greenstone Belt, South Africa: Accreted slivers with contrasting metamorphic conditions. Precambrian Research, 2013, 227, 77-98.	2.7	34
61	U–Pb and Hf isotope data of detrital zircons from the Barberton Greenstone Belt: constraints on provenance and Archaean crustal evolution. Journal of the Geological Society, 2013, 170, 215-223.	2.1	70
62	Dating the Itabira iron formation, Quadrilátero FerrÃfero of Minas Gerais, Brazil, at 2.65Ga: Depositional U–Pb age of zircon from a metavolcanic layer. Precambrian Research, 2012, 204-205, 40-45.	2.7	67
63	U–Pb and Hf isotope record of detrital zircons from gold-bearing sediments of the Pietersburg Greenstone Belt (South Africa)—Is there a common provenance with the Witwatersrand Basin?. Precambrian Research, 2012, 204-205, 46-56.	2.7	104
64	Hafnium isotope record of the Ancient Gneiss Complex, Swaziland, southern Africa: evidence for Archaean crust–mantle formation and crust reworking between 3.66 and 2.73 Ga. Journal of the Geological Society, 2011, 168, 953-964.	2.1	139
65	Archaean to Palaeoproterozoic crustal evolution of the Aravalli mountain range, NW India, and its hinterland: The U–Pb and Hf isotope record of detrital zircon. Precambrian Research, 2011, 187, 155-164.	2.7	107
66	A review of Sm-Nd and Lu-Hf isotope studies in the Limpopo Complex and adjoining cratonic areas, and their bearing on models of crustal evolution and tectonism. , 2011, , .		7
67	Baltica- and Gondwana-derived sediments in the Mid-German Crystalline Rise (Central Europe): Implications for the closure of the Rheic ocean. Gondwana Research, 2010, 17, 254-263.	6.0	101
68	The behavior of the Hf isotope system in radiation-damaged zircon during experimental hydrothermal alteration. American Mineralogist, 2010, 95, 1343-1348.	1.9	80
69	Decompressional Heating of the Mahalapye Complex (Limpopo Belt, Botswana): a Response to Palaeoproterozoic Magmatic Underplating?. Journal of Petrology, 2010, 51, 703-729.	2.8	46
70	Hafnium isotope homogenization during metamorphic zircon growth in amphibolite-facies rocks: Examples from the Shackleton Range (Antarctica). Geochimica Et Cosmochimica Acta, 2010, 74, 4740-4758.	3.9	76
71	U–Th–Pb and Lu–Hf systematics of zircon from TTG's, leucosomes, meta-anorthosites and quartzites of the Limpopo Belt (South Africa): Constraints for the formation, recycling and metamorphism of Palaeoarchaean crust. Precambrian Research, 2010, 179, 50-68.	2.7	153
72	New constraints on the auriferous Witwatersrand sediment provenance from combined detrital zircon U–Pb and Lu–Hf isotope data for the Eldorado Reef (Central Rand Group, South Africa). Precambrian Research, 2010, 183, 817-824.	2.7	41

#	Article	IF	CITATIONS
73	Zircon formation versus zircon alteration — New insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chemical Geology, 2009, 261, 230-243.	3.3	639
74	Archean Accretion and Crustal Evolution of the Kalahari Craton—the Zircon Age and Hf Isotope Record of Granitic Rocks from Barberton/Swaziland to the Francistown Arc. Journal of Petrology, 2009, 50, 933-966.	2.8	290
75	Comments on "P–T record of two high-grade metamorphic events in the Central Zone of the Limpopo Complex, South Africa―by L. L. Perchuk, D. D. van Reenen, D. A. Varlamov, S. M. van Kal, Tabatabaeimanesh, R. Boshoff. Lithos, 2008, 106, 399-402.	1.4	13
76	U–Pb and Lu–Hf isotope record of detrital zircon grains from the Limpopo Belt – Evidence for crustal recycling at the Hadean to early-Archean transition. Geochimica Et Cosmochimica Acta, 2008, 72, 5304-5329.	3.9	95
77	Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth and Planetary Science Letters, 2006, 249, 47-61.	4.4	711
78	Provenance and Magmatic–Metamorphic Evolution of a Variscan Island-Arc Complex: Constraints from U–Pb Dating, Petrology, and Geospeedometry of the KyffhÃ ¤ ser Crystalline Complex, Central Germany. Journal of Petrology, 2005, 46, 1393-1420.	2.8	15
79	Petrological evolution in the roof of the high-grade metamorphic Central Zone of the Limpopo Belt, South Africa. Geological Magazine, 2005, 142, 229-240.	1.5	34
80	Timing of Upper Carboniferous-Permian horst-basin formation and magmatism in the NW Thuringian Forest, central Germany: a review. Geological Society Special Publication, 2004, 223, 319-334.	1.3	13
81	Different age response of zircon and monazite during the tectono-metamorphic evolution of a high grade paragneiss from the Ruhla Crystalline Complex, central Germany. Contributions To Mineralogy and Petrology, 2003, 145, 691-706.	3.1	39
82	Herkunft und Verwitterung von Granitgeröllen in Rotliegendsedimenten des nordwestlichen Thüringer Waldes: Petrographische, geochemische und Zirkon-Untersuchungen. Neues Jahrbuch Fur Geologie Und Palaontologie - Abhandlungen, 2000, 218, 173-199.	0.4	3
83	Geochronological and morphological investigations of zircons from granite porphyry dikes, rhyolites and granite pebbles from the northwestern Thuringian forest. Zeitschrift Der Deutschen Geologischen Gesellschaft, 2000, 151, 187-206.	0.1	4
84	Geology of the Kyffhäser crystalline complex. Neues Jahrbuch Für Geologie Und Paläntologie, 1994, 1994, 368-384.	0.3	4
85	Variscan tectonics. , 0, , 599-664.		28