Julianna KobolÃ;k

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2867624/publications.pdf

Version: 2024-02-01

64 papers

1,670 citations

361413 20 h-index 315739 38 g-index

67 all docs

67 docs citations

67 times ranked

5304 citing authors

#	Article	IF	CITATIONS
1	Transgenic pigs expressing near infrared fluorescent proteinâ€"A novel tool for noninvasive imaging of islet xenotransplants. Xenotransplantation, 2022, 29, e12719.	2.8	3
2	Brain-derived neurotrophic factor increases cell number of neural progenitor cells derived from human induced pluripotent stem cells. PeerJ, 2021, 9, e11388.	2.0	12
3	Fluorescent tagging of endogenous Heme oxygenase-1 in human induced pluripotent stem cells for high content imaging of oxidative stress in various differentiated lineages. Archives of Toxicology, 2021, 95, 3285-3302.	4.2	13
4	Golgi requires a new casting in the screenplay of mucopolysaccharidosis II cytopathology. Biologia Futura, $2021, 1.$	1.4	2
5	Detection and Functional Evaluation of the P2X7 Receptor in hiPSC Derived Neurons and Microglia-Like Cells. Frontiers in Molecular Neuroscience, 2021, 14, 793769.	2.9	6
6	Live-Cell Imaging of Single Neurotrophin Receptor Molecules on Human Neurons in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 13260.	4.1	3
7	Systematic analysis of different pluripotent stem cell-derived cardiac myocytes as potential testing model for cardiocytoprotection. Vascular Pharmacology, 2020, 133-134, 106781.	2.1	2
8	The expression of P2X7 receptor in human induced pluripotent stem cellâ€derived cellular model of Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e043599.	0.8	0
9	The Role of P2X7 Receptor in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2020, 13, 94.	2.9	44
10	The EU-ToxRisk method documentation, data processing and chemical testing pipeline for the regulatory use of new approach methods. Archives of Toxicology, 2020, 94, 2435-2461.	4.2	30
11	Integration of nano―and biotechnology for betaâ€cell and islet transplantation in typeâ€1 diabetes treatment. Cell Proliferation, 2020, 53, e12785.	5. 3	18
12	Grafted human induced pluripotent stem cells improve the outcome of spinal cord injury: modulation of the lesion microenvironment. Scientific Reports, 2020, 10, 22414.	3.3	15
13	Human Induced Pluripotent Stem Cell-Derived 3D-Neurospheres Are Suitable for Neurotoxicity Screening. Cells, 2020, 9, 1122.	4.1	39
14	The Nervous System Relevance of the Calcium Sensing Receptor in Health and Disease. Molecules, 2019, 24, 2546.	3.8	29
15	Generation of human induced pluripotent stem cell line UNIGEi001-A from a 2-years old patient with Mucopolysaccharidosis type IH disease. Stem Cell Research, 2019, 41, 101604.	0.7	5
16	Calcilytic NPS 2143 Reduces Amyloid Secretion and Increases sAβPPα Release from PSEN1 Mutant iPSC-Derived Neurons. Journal of Alzheimer's Disease, 2019, 72, 885-899.	2.6	6
17	Modelling the neuropathology of lysosomal storage disorders through disease-specific human induced pluripotent stem cells. Experimental Cell Research, 2019, 380, 216-233.	2.6	28
18	Allele-specific RNA-seq expression profiling of imprinted genes in mouse isogenic pluripotent states. Epigenetics and Chromatin, 2019, 12, 14.	3.9	11

#	Article	IF	Citations
19	Mammalian embryo comparison identifies novel pluripotency genes associated with the na \tilde{A} -ve or primed state. Biology Open, 2018, 7, .	1.2	32
20	Establishment of a rabbit induced pluripotent stem cell (RbiPSC) line using lentiviral delivery of human pluripotency factors. Stem Cell Research, 2017, 21, 16-18.	0.7	7
21	Establishment of an induced pluripotent stem cell (iPSC) line from a 9-year old male with autism spectrum disorder (ASD). Stem Cell Research, 2017, 21, 19-22.	0.7	7
22	Real architecture For 3D Tissue (RAFTâ,,¢) culture system improves viability and maintains insulin and glucagon production of mouse pancreatic islet cells. Cytotechnology, 2017, 69, 359-369.	1.6	13
23	Human in vitro neurotoxicology enabled by hiPSC-derived neurons. Reproductive Toxicology, 2017, 72, 36.	2.9	0
24	Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells. Stem Cell Research, 2017, 25, 139-151.	0.7	95
25	Immunogenic Dendritic Cell Generation from Pluripotent Stem Cells by Ectopic Expression of <i>Runx3</i> . Journal of Immunology, 2017, 198, 239-248.	0.8	9
26	In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities. Archives of Toxicology, 2017, 91, 1-33.	4.2	132
27	The Potency of Induced Pluripotent Stem Cells in Cartilage Regeneration and Osteoarthritis Treatment. Advances in Experimental Medicine and Biology, 2017, 1079, 55-68.	1.6	21
28	Neurons derived from sporadic Alzheimer's disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation. Alzheimer's Research and Therapy, 2017, 9, 90.	6.2	161
29	Altered neurite morphology and cholinergic function of induced pluripotent stem cell-derived neurons from a patient with Kleefstra syndrome and autism. Translational Psychiatry, 2017, 7, e1179-e1179.	4.8	29
30	Generation of Cholinergic and Dopaminergic Interneurons from Human Pluripotent Stem Cells as a Relevant Tool for In Vitro Modeling of Neurological Disorders Pathology and Therapy. Stem Cells International, 2016, 2016, 1-16.	2.5	10
31	Neurosphere Based Differentiation of Human iPSC Improves Astrocyte Differentiation. Stem Cells International, 2016, 2016, 1-15.	2.5	53
32	Astrocyte Differentiation of Human Pluripotent Stem Cells: New Tools for Neurological Disorder Research. Frontiers in Cellular Neuroscience, 2016, 10, 215.	3.7	120
33	Establishment of induced pluripotent stem cell (iPSC) line from a 63-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Research, 2016, 17, 78-80.	0.7	7
34	Establishment of induced pluripotent stem cell (iPSC) line from a 75-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Research, 2016, 17, 81-83.	0.7	9
35	Establishment of induced pluripotent stem cell (iPSC) line from a 57-year old patient with sporadic Alzheimer's disease. Stem Cell Research, 2016, 17, 72-74.	0.7	12
36	Generation of Mucopolysaccharidosis type II (MPS II) human induced pluripotent stem cell (iPSC) line from a 3-year-old male with pathogenic IDS mutation. Stem Cell Research, 2016, 17, 479-481.	0.7	6

#	Article	IF	CITATIONS
37	Generation of Mucopolysaccharidosis type II (MPS II) human induced pluripotent stem cell (iPSC) line from a 1-year-old male with pathogenic IDS mutation. Stem Cell Research, 2016, 17, 482-484.	0.7	11
38	Establishment of EHMT1 mutant induced pluripotent stem cell (iPSC) line from a 11-year-old Kleefstra syndrome (KS) patient with autism and normal intellectual performance. Stem Cell Research, 2016, 17, 531-533.	0.7	7
39	Generation of Mucopolysaccharidosis type II (MPS II) human induced pluripotent stem cell (iPSC) line from a 7-year-old male with pathogenic IDS mutation. Stem Cell Research, 2016, 17, 463-465.	0.7	6
40	Generation of human induced pluripotent stem cell (iPSC) line from an unaffected female carrier of Mucopolysaccharidosis type II (MPS II) disorder. Stem Cell Research, 2016, 17, 514-516.	0.7	11
41	Targeted next generation sequencing of a panel of autism-related genes identifies an EHMT1 mutation in a Kleefstra syndrome patient with autism and normal intellectual performance. Gene, 2016, 595, 131-141.	2.2	25
42	Establishment of induced pluripotent stem cell (iPSC) line from an 84-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Research, 2016, 17, 75-77.	0.7	8
43	In vitro models of cancer stem cells and clinical applications. BMC Cancer, 2016, 16, 738.	2.6	65
44	The positional identity of iPSC-derived neural progenitor cells along the anterior-posterior axis is controlled in a dosage-dependent manner by bFGF and EGF. Differentiation, 2016, 92, 183-194.	1.9	10
45	Establishment of PSEN1 mutant induced pluripotent stem cell (iPSC) line from an Alzheimer's disease (AD) female patient. Stem Cell Research, 2016, 17, 69-71.	0.7	12
46	Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods, 2016, 99, 62-68.	3.8	189
47	The crossroads between cancer stem cells and aging. BMC Cancer, 2015, 15, S1.	2.6	17
48	Cloning and characterization of rabbit POU5F1, SOX2, KLF4, C-MYC and NANOG pluripotency-associated genes. Gene, 2015, 566, 148-157.	2.2	12
49	Autophagy is required for zebrafish caudal fin regeneration. Cell Death and Differentiation, 2014, 21, 547-556.	11.2	78
50	iTRAQ proteome analysis reflects a progressed differentiation state of epiblast derived versus inner cell mass derived murine embryonic stem cells. Journal of Proteomics, 2013, 90, 38-51.	2.4	10
51	Comparative Analysis of Nuclear Transfer Embryo-Derived Mouse Embryonic Stem Cells. Part I: Cellular Characterization. Cellular Reprogramming, 2012, 14, 56-67.	0.9	6
52	TYK2 Kinase Activity Is Required for Functional Type I Interferon Responses In Vivo. PLoS ONE, 2012, 7, e39141.	2.5	54
53	Comparative Analysis of Nuclear Transfer Embryo-Derived Mouse Embryonic Stem Cells. Part II: Gene Regulation. Cellular Reprogramming, 2012, 14, 68-78.	0.9	1
54	PS2-084 Dissection of kinase-dependent and -independent functions of Tyk2 in immunity to infection and tumor-surveillance. Cytokine, 2011, 56, 86.	3.2	0

#	Article	IF	CITATIONS
55	Gene targeting and Calcium handling efficiencies in mouse embryonic stem cell lines. World Journal of Stem Cells, 2010, 2, 127.	2.8	6
56	Generation of Mouse Embryonic Stem Cell Lines from Zona-Free Nuclear Transfer Embryos. Cellular Reprogramming, 2010, 12, 105-113.	0.9	8
57	Promoter analysis of the rabbit POU5F1 gene and its expression in preimplantation stage embryos. BMC Molecular Biology, 2009, 10, 88.	3.0	42
58	289 TARGETING EFFICIENCIES AND CALCIUM-BINDING PROTEIN PROFILES OF TWO MOUSE EMBRYONIC STEM CELL LINES. Reproduction, Fertility and Development, 2008, 20, 224.	0.4	0
59	226 CELL LINE-DEPENDENT GENE EXPRESSION PROFILES IN MOUSE EMBRYONIC STEM CELLS. Reproduction, Fertility and Development, 2007, 19, 229.	0.4	O
60	Gene expression profiles of vitrified in vivo derived 8-cell stage mouse embryos detected by high density oligonucleotide microarrays. Molecular Reproduction and Development, 2006, 73, 1380-1392.	2.0	45
61	266 IDENTIFICATION OF Oct-4 AND Nanog, THE TWO PLURIPOTENCY MARKER GENES IN RABBIT PRE-IMPLANTATION-STAGE EMBRYOS. Reproduction, Fertility and Development, 2006, 18, 240.	0.4	O
62	198 REPROGRAMMING FIBROBLAST CELL CULTURES WITH EMBRYONIC STEM-CELL EXTRACTS. Reproduction, Fertility and Development, 2006, 18, 207.	0.4	0
63	Mouse embryonic stem cells express histidine decarboxylase and histamine H1 receptors. Inflammation Research, 2003, 52, s53-s54.	4.0	5
64	Activator effect of coinjected enhancers on the muscle-specific expression of promoters in zebrafish embryos. Molecular Reproduction and Development, 1997, 47, 404-412.	2.0	53