Carlos M Granadeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2867490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface Modification of Graphene Nanosheets with Gold Nanoparticles: The Role of Oxygen Moieties at Graphene Surface on Gold Nucleation and Growth. Chemistry of Materials, 2009, 21, 4796-4802.	3.2	838
2	A theoretical interpretation of the abnormal 5D0→7F4 intensity based on the Eu3+ local coordination in the Na9[EuW10O36]·14H2O polyoxometalate. Journal of Luminescence, 2006, 121, 561-567.	1.5	197
3	An efficient oxidative desulfurization process using terbium-polyoxometalate@MIL-101(Cr). Catalysis Science and Technology, 2013, 3, 2404.	2.1	135
4	Production of ultra-deep sulfur-free diesels using a sustainable catalytic system based on UiO-66(Zr). Chemical Communications, 2015, 51, 13818-13821.	2.2	107
5	Monovacant polyoxometalates incorporated into MIL-101(Cr): novel heterogeneous catalysts for liquid phase oxidation. Applied Catalysis A: General, 2013, 453, 316-326.	2.2	103
6	Influence of a porous MOF support on the catalytic performance of Eu-polyoxometalate based materials: desulfurization of a model diesel. Catalysis Science and Technology, 2016, 6, 1515-1522.	2.1	92
7	Catalytic performance and electrochemical behaviour of Metal–organic frameworks: MIL-101(Fe) versus NH2-MIL-101(Fe). Polyhedron, 2017, 127, 464-470.	1.0	82
8	Oxidative catalytic versatility of a trivacant polyoxotungstate incorporated into MIL-101(Cr). Catalysis Science and Technology, 2014, 4, 1416.	2.1	79
9	FT-IR, FT-Raman, SERS and computational study of 5-ethylsulphonyl-2-(o-chlorobenzyl)benzoxazole. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 96, 617-625.	2.0	77
10	Novel polyoxometalate silica nano-sized spheres: efficient catalysts for olefin oxidation and the deep desulfurization process. Dalton Transactions, 2014, 43, 9518-9528.	1.6	72
11	Efficient heterogeneous polyoxometalate-hybrid catalysts for the oxidative desulfurization of fuels. Catalysis Communications, 2018, 104, 1-8.	1.6	67
12	Luminescent Polyoxotungstoeuropate Anion-Pillared Layered Double Hydroxides. European Journal of Inorganic Chemistry, 2006, 2006, 726-734.	1.0	56
13	Lanthanopolyoxotungstates in silica nanoparticles: multi-wavelength photoluminescent core/shell materials. Journal of Materials Chemistry, 2010, 20, 3313.	6.7	56
14	Multifunctional catalyst based on sandwich-type polyoxotungstate and MIL-101 for liquid phase oxidations. Catalysis Today, 2013, 210, 142-148.	2.2	56
15	Oxidative desulfurization strategies using Keggin-type polyoxometalate catalysts: Biphasic versus solvent-free systems. Catalysis Today, 2019, 333, 226-236.	2.2	53
16	Novel heterogeneous catalysts based on lanthanopolyoxometalates supported on MIL-101(Cr). Catalysis Today, 2013, 218-219, 35-42.	2.2	45
17	IR, Raman and SERS spectra of 2-(methoxycarbonylmethylsulfanyl)-3,5-dinitrobenzene carboxylic acid. Journal of the Brazilian Chemical Society, 2009, 20, 549-559.	0.6	44
18	Lanthanopolyoxometalates as Building Blocks for Multiwavelength Photoluminescent Organic–Inorganic Hybrid Materials. European Journal of Inorganic Chemistry, 2009, 2009, 5088-5095.	1.0	44

#	Article	IF	CITATIONS
19	Lanthanopolyoxometalates: From the structure of polyanions to the design of functional materials. Polyhedron, 2013, 52, 10-24.	1.0	43
20	Mesoporous nanosilica-supported polyoxomolybdate as catalysts for sustainable desulfurization. Microporous and Mesoporous Materials, 2019, 275, 163-171.	2.2	39
21	Vibrational spectroscopic studies and computational study of 4-fluoro-N-(2′-hydroxy-4′-nitrophenyl)phenylacetamide. Journal of Molecular Structure, 2011, 994, 223-231.	1.8	38
22	FT-IR, FT-Raman, surface enhanced Raman scattering and computational study of 2-(p-fluorobenzyl)-6-nitrobenzoxazole. Journal of Molecular Structure, 2012, 1012, 22-30.	1.8	37
23	Desulfurization process conciliating heterogeneous oxidation and liquid extraction: Organic solvent or centrifugation/water?. Applied Catalysis A: General, 2017, 542, 359-367.	2.2	37
24	Large-pore silica spheres as support for samarium-coordinated undecamolybdophosphate: Oxidative desulfurization of diesels. Fuel, 2020, 259, 116213.	3.4	37
25	Improving the Catalytic Performance of Keggin [PW12O40]3â^' for Oxidative Desulfurization: Ionic Liquids versus SBA-15 Composite. Materials, 2018, 11, 1196.	1.3	36
26	Efficient Oxidative Desulfurization Processes Using Polyoxomolybdate Based Catalysts. Energies, 2018, 11, 1696.	1.6	29
27	Effect on selective adsorption of ethane and ethylene of the polyoxometalates impregnation in the metal-organic framework MIL-101. Adsorption, 2014, 20, 533-543.	1.4	27
28	Europium Polyoxometalates Encapsulated in Silica Nanoparticles – Characterization and Photoluminescence Studies. European Journal of Inorganic Chemistry, 2013, 2013, 2877-2886.	1.0	26
29	Sustainable Desulfurization Processes Catalyzed by Titanium-Polyoxometalate@TM-SBA-15. Topics in Catalysis, 2017, 60, 1140-1150.	1.3	25
30	The first one-dimensional lanthanopolyoxotungstoborate. Inorganic Chemistry Communication, 2005, 8, 924-927.	1.8	23
31	Dinuclear Lanthanide(III) Complexes by Metal-Ion-Assisted Hydration of Di-2-pyridyl Ketone Azine. Inorganic Chemistry, 2013, 52, 4145-4147.	1.9	21
32	A novel red emitting material based on polyoxometalate@periodic mesoporous organosilica. Microporous and Mesoporous Materials, 2016, 234, 248-256.	2.2	21
33	Photoluminescent hybrid materials based on lanthanopolyoxotungstates and 3-hydroxypicolinic acid. Journal of Alloys and Compounds, 2008, 451, 422-425.	2.8	17
34	IR, Raman and SERS spectra of 2-phenoxymethylbenzothiazole. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 132-139.	2.0	16
35	Luminescent Transparent Composite Films Based on Lanthanopolyoxometalates and Filmogenic Polysaccharides. European Journal of Inorganic Chemistry, 2013, 2013, 1890-1896.	1.0	15
36	SiW ₁₁ Fe@MILâ€101(Cr) Composite: A Novel and Versatile Electrocatalyst. ChemElectroChem, 2014, 1, 1293-1300.	1.7	15

CARLOS M GRANADEIRO

#	Article	IF	CITATIONS
37	Photoluminescent bimetallic-3-hydroxypicolinate/graphene oxide nanocomposite. RSC Advances, 2012, 2, 9443.	1.7	13
38	Multifunctionality in Two Families of Dinuclear Lanthanide(III) Complexes with a Tridentate Schiff-Base Ligand. Inorganic Chemistry, 2019, 58, 9581-9585.	1.9	12
39	Effective Zinc-Substituted Keggin Composite To Catalyze the Removal of Sulfur from Real Diesels under a Solvent-Free System. Industrial & Engineering Chemistry Research, 2019, 58, 18540-18549.	1.8	12
40	Cobalt aluminate nanoparticles supported on MIL-101 structure: catalytic performance investigation. RSC Advances, 2015, 5, 4175-4183.	1.7	11
41	Lindqvist versus Keggin-Type Polyoxometalates as Catalysts for Effective Desulfurization of Fuels. Catalysts, 2022, 12, 581.	1.6	9
42	Mesoporous Silica vs. Organosilica Composites to Desulfurize Diesel. Frontiers in Chemistry, 2019, 7, 756.	1.8	7
43	Vanadium C-scorpionate supported on mesoporous aptes-functionalized SBA-15 as catalyst for the peroxidative oxidation of benzyl alcohol. Microporous and Mesoporous Materials, 2021, 320, 111111.	2.2	7
44	FTâ€IR, FTâ€Raman, SERS spectra and computational calculations of 4â€ethylâ€ <i>N</i> â€(2′â€hydroxyâ€5′â€nitrophenyl)benzamide. Journal of Raman Spectroscopy, 2010, 4	1, <mark>12</mark> 81-39	0. ⁶
45	Solvent-Free Desulfurization System to Produce Low-Sulfur Diesel Using Hybrid Monovacant Keggin-Type Catalyst. Molecules, 2020, 25, 4961.	1.7	4
46	Vanadium(V) complexes supported on porous MIL-100(Fe) as catalysts for the selective oxidation of toluene. Microporous and Mesoporous Materials, 2022, 341, 112091.	2.2	4
47	Lanthanopolyoxometalateâ€6ilica Core/Shell Nanoparticles as Potential MRI Contrast Agents. European Journal of Inorganic Chemistry, 2021, 2021, 3458-3465.	1.0	2