Jun-Sheng Duan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2867223/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simulation of the eigenvalue problem for tapered rotating beams by the modified decomposition method. International Journal for Computational Methods in Engineering Science and Mechanics, 2022, 23, 20-28.	2.1	3
2	The Mixed Boundary Value Problems and Chebyshev Collocation Method for Caputo-Type Fractional Ordinary Differential Equations. Fractal and Fractional, 2022, 6, 148.	3.3	5
3	Approximate Solution of Fractional Differential Equation by Quadratic Splines. Fractal and Fractional, 2022, 6, 369.	3.3	3
4	Simultaneous Characterization of Relaxation, Creep, Dissipation, and Hysteresis by Fractional-Order Constitutive Models. Fractal and Fractional, 2021, 5, 36.	3.3	7
5	Vibration Systems with Fractional-Order and Distributed-Order Derivatives Characterizing Viscoinertia. Fractal and Fractional, 2021, 5, 67.	3.3	3
6	Response analysis of six-parameter fractional constitutive model. Physica Scripta, 2021, 96, 025220.	2.5	4
7	Comparison of Two Different Analytical Forms of Response for Fractional Oscillation Equation. Fractal and Fractional, 2021, 5, 188.	3.3	5
8	Identification of system with distributed-order derivatives. Fractional Calculus and Applied Analysis, 2021, 24, 1619-1628.	2.2	0
9	Oscillatory shear flow between two parallel plates for viscoelastic constitutive model of distributed-order derivative. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 1137-1148.	2.8	5
10	Calculation of radii and atom numbers of different coordination shells in cubic crystals. Materials Today Communications, 2020, 22, 100768.	1.9	3
11	Matrix Mittag-Leffler function and solution of multi-term fractional differential equations. International Journal of Dynamical Systems and Differential Equations, 2020, 10, 401.	0.0	0
12	Generalized Path Optimization Problem for a Weighted Digraph over an Additively Idempotent Semiring. Journal of Advances in Applied & Computational Mathematics, 2020, 7, 25-31.	0.1	0
13	The periodic response of a fractional oscillator with a spring-pot and an inerter-pot. Journal of Mechanics, 2020, 37, 108-117.	1.4	4
14	Shrinkage Points of Golden Rectangle, Fibonacci Spirals, and Golden Spirals. Discrete Dynamics in Nature and Society, 2019, 2019, 1-6.	0.9	4
15	Vibration Equation of Fractional Order Describing Viscoelasticity and Viscous Inertia. Open Physics, 2019, 17, 850-856.	1.7	4
16	Fractional model and solution for the Blackâ€Scholes equation. Mathematical Methods in the Applied Sciences, 2018, 41, 697-704.	2.3	9
17	Stokes' second problem of viscoelastic fluids with constitutive equation of distributed-order derivative. Applied Mathematics and Computation, 2018, 331, 130-139.	2.2	7
18	Steady periodic response for a vibration system with distributed order derivatives to periodic excitation. JVC/Journal of Vibration and Control, 2018, 24, 3124-3131.	2.6	9

#	Article	IF	CITATIONS
19	System of linear fractional differential equations and the Mittag-Leffler functions with matrix variable. Journal of Physics: Conference Series, 2018, 1053, 012032.	0.4	2
20	Solution of Fractional Differential Equation Systems and Computation of Matrix Mittag–Leffler Functions. Symmetry, 2018, 10, 503.	2.2	19
21	A generalization of the Mittag–Leffler function and solution of system of fractional differential equations. Advances in Difference Equations, 2018, 2018, .	3.5	8
22	A Generalized Constitutive Equation with Distributed Order Derivative for Viscoelastic SolidA Generalized Constitutive Equation with Distributed Order Derivative for Viscoelastic Solid. International Journal of Materials Mechanics and Manufacturing, 2018, 6, 191-194.	0.2	0
23	Higher order numeric solutions of the Lane–Emden-type equations derived from the multi-stage modified Adomian decomposition method. International Journal of Computer Mathematics, 2017, 94, 197-215.	1.8	26
24	Mechanical response and simulation for constitutive equations with distributed order derivatives. International Journal of Modeling, Simulation, and Scientific Computing, 2017, 08, 1750040.	1.4	7
25	A comparison study of steady-state vibrations with single fractional-order and distributed-order derivatives. Open Physics, 2017, 15, 809-818.	1.7	3
26	Lévy stable distribution and space-fractional Fokker–Planck type equation. Journal of King Saud University - Science, 2016, 28, 17-20.	3.5	3
27	Exact and approximate analytic solutions of the thin film flow of fourth-grade fluids by the modified Adomian decomposition method. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 2432-2440.	2.8	8
28	Pull-in instability analyses for NEMS actuators with quartic shape approximation. Applied Mathematics and Mechanics (English Edition), 2016, 37, 303-314.	3.6	16
29	An improved model for the cantilever NEMS actuator including the surface energy, fringing field and Casimir effects. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 75, 202-209.	2.7	20
30	Solution of Higher-Order, Multipoint, Nonlinear Boundary Value Problems with High-Order Robin-Type Boundary Conditions by the Adomian Decomposition Method. Applied Mathematics and Information Sciences, 2016, 10, 1231-1242.	0.5	8
31	A Modified Fractional Derivative and its Application to Fractional Vibration Equation. Applied Mathematics and Information Sciences, 2016, 10, 1863-1869.	0.5	2
32	Pull-in parameter analysis for the cantilever NEMS actuator considering fringing field and Casimir effects. , 2015, , .		0
33	Steady-state response of fractional vibration system with harmonic excitation. , 2015, , .		0
34	A detailed analysis for the fundamental solution of fractional vibration equation. Open Mathematics, 2015, 13, .	1.0	14
35	Solution of the Magnetohydrodynamics Jeffery-Hamel Flow Equations by the Modified Adomian Decomposition Method. Advances in Applied Mathematics and Mechanics, 2015, 7, 675-686.	1.2	12
36	Response of a fractional nonlinear system to harmonic excitation by the averaging method. Open Physics, 2015, 13, .	1.7	4

#	Article	IF	CITATIONS
37	Solving New Fourth–Order Emden–Fowler-Type Equations by the Adomian Decomposition Method. International Journal for Computational Methods in Engineering Science and Mechanics, 2015, 16, 121-131.	2.1	21
38	On the Solution of Non-Isothermal Reaction-Diffusion Model Equations in a Spherical Catalyst by the Modified Adomian Method. Chemical Engineering Communications, 2015, 202, 1081-1088.	2.6	21
39	Solving a class of linear nonlocal boundary value problems using the reproducing kernel. Applied Mathematics and Computation, 2015, 265, 1098-1105.	2.2	13
40	Steady-state concentrations of carbon dioxide absorbed into phenyl glycidyl ether solutions by the Adomian decomposition method. Journal of Mathematical Chemistry, 2015, 53, 1054-1067.	1.5	32
41	On the Adomian decomposition method for solving the Stefan problem. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 912-928.	2.8	18
42	The Volterra integral form of the Lane–Emden equation: new derivations and solution by the Adomian decomposition method. Journal of Applied Mathematics and Computing, 2015, 47, 365-379.	2.5	11
43	A reliable analysis of oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. International Journal of Biomathematics, 2014, 07, 1450020.	2.9	6
44	Similarity Solution for Fractional Diffusion Equation. Abstract and Applied Analysis, 2014, 2014, 1-5.	0.7	6
45	A segmented and weighted Adomian decomposition algorithm for boundary value problem of nonlinear groundwater equation. Mathematical Methods in the Applied Sciences, 2014, 37, 2406-2418.	2.3	6
46	A reliable algorithm for positive solutions of nonlinear boundary value problems by the multistage Adomian decomposition method. Open Engineering, 2014, 5, .	1.6	14
47	Solving coupled Lane–Emden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method. Journal of Mathematical Chemistry, 2014, 52, 255-267.	1.5	95
48	Fractional diffusion-wave equations on finite interval by Laplace transform. Integral Transforms and Special Functions, 2014, 25, 220-229.	1.2	4
49	The zeros of the solutions of the fractional oscillation equation. Fractional Calculus and Applied Analysis, 2014, 17, 10-22.	2.2	14
50	The periodic solution of Stokes' second problem for viscoelastic fluids as characterized by a fractional constitutive equation. Journal of Non-Newtonian Fluid Mechanics, 2014, 205, 11-15.	2.4	12
51	A study on the systems of the Volterra integral forms of the Lane–Emden equations by the Adomian decomposition method. Mathematical Methods in the Applied Sciences, 2014, 37, 10-19.	2.3	46
52	Some Analytical Techniques in Fractional Calculus: Realities and Challenges. Advances in Dynamics, Patterns, Cognition, 2014, , 35-62.	0.3	9
53	Parameter effects on shear stress of Johnson–Segalman fluid in Poiseuille flow. International Journal of Non-Linear Mechanics, 2013, 55, 140-146.	2.6	3
54	A pull-in parameter analysis for the cantilever NEMS actuator model including surface energy, fringing field and Casimir effects. International Journal of Solids and Structures, 2013, 50, 3511-3518.	2.7	22

#	Article	IF	CITATIONS
55	The modified Adomian decomposition method and the noise terms phenomenon for solving nonlinear weakly-singular Volterra and Fredholm integral equations. Open Engineering, 2013, 3, .	1.6	2
56	Parametrized temperature distribution and efficiency of convective straight fins with temperature-dependent thermal conductivity by a new modified decomposition method. International Journal of Heat and Mass Transfer, 2013, 59, 137-143.	4.8	15
57	Adomian decomposition method for solving the Volterra integral form of the Lane–Emden equations with initial values and boundary conditions. Applied Mathematics and Computation, 2013, 219, 5004-5019.	2.2	81
58	The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations. Computers and Mathematics With Applications, 2013, 66, 728-736.	2.7	61
59	Fractional diffusion equation in half-space with Robin boundary condition. Open Physics, 2013, 11, .	1.7	2
60	Solution of the model of beam-type micro- and nano-scale electrostatic actuators by a new modified Adomian decomposition method for nonlinear boundary value problems. International Journal of Non-Linear Mechanics, 2013, 49, 159-169.	2.6	60
61	A new modified Adomian decomposition method and its multistage form for solving nonlinear boundary value problems with Robin boundary conditions. Applied Mathematical Modelling, 2013, 37, 8687-8708.	4.2	67
62	Analytic approximation of the blowâ€up time for nonlinear differential equations by the ADM–Padé technique. Mathematical Methods in the Applied Sciences, 2013, 36, 1790-1804.	2.3	6
63	Eigenvalue problems for fractional ordinary differential equations. Chaos, Solitons and Fractals, 2013, 46, 46-53.	5.1	41
64	A reliable modification of the Adomian decomposition method for higherâ€order nonlinear differential equations. Kybernetes, 2013, 42, 282-308.	2.2	21
65	On the Effective Region of Convergence of the Decomposition Series Solution. Journal of Algorithms and Computational Technology, 2013, 7, 227-247.	0.7	13
66	The Periodic Solution of Fractional Oscillation Equation with Periodic Input. Advances in Mathematical Physics, 2013, 2013, 1-6.	0.8	13
67	Higher-order numeric Wazwaz–El-Sayed modified Adomian decomposition algorithms. Computers and Mathematics With Applications, 2012, 63, 1557-1568.	2.7	18
68	Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the Rach–Adomian–Meyers modified decomposition method. Applied Mathematics and Computation, 2012, 218, 8370-8392.	2.2	43
69	On the Power Series Expansion of a Nonlinear Function of a Power Series. Journal of Applied & Computational Mathematics, 2012, 01, .	0.1	0
70	New ideas for decomposing nonlinearities in differential equations. Applied Mathematics and Computation, 2011, 218, 1774-1784.	2.2	13
71	New higher-order numerical one-step methods based on the Adomian and the modified decomposition methods. Applied Mathematics and Computation, 2011, 218, 2810-2828.	2.2	40
72	A new modification of the Adomian decomposition method for solving boundary value problems for higher order nonlinear differential equations. Applied Mathematics and Computation, 2011, 218, 4090-4118.	2.2	160

#	Article	IF	CITATIONS
73	New recurrence algorithms for the nonclassic Adomian polynomials. Computers and Mathematics With Applications, 2011, 62, 2961-2977.	2.7	34
74	Near-field and far-field approximations by the Adomian and asymptotic decomposition methods. Applied Mathematics and Computation, 2011, 217, 5910-5922.	2.2	31
75	Convenient analytic recurrence algorithms for the Adomian polynomials. Applied Mathematics and Computation, 2011, 217, 6337-6348.	2.2	145
76	Standard Bases of a Vector Space Over a Linearly Ordered Incline. Communications in Algebra, 2011, 39, 1404-1412.	0.6	3
77	An efficient algorithm for the multivariable Adomian polynomials. Applied Mathematics and Computation, 2010, 217, 2456-2467.	2.2	111
78	Recurrence triangle for Adomian polynomials. Applied Mathematics and Computation, 2010, 216, 1235-1241.	2.2	121
79	Solution of system of fractional differential equations by Adomian decomposition method. Applied Mathematics, 2007, 22, 7-12.	1.0	32
80	Time- and space-fractional partial differential equations. Journal of Mathematical Physics, 2005, 46, 013504.	1.1	53
81	The transitive closure, convergence of powers and adjoint of generalized fuzzy matrices. Fuzzy Sets and Systems, 2004, 145, 301-311.	2.7	28
82	Concentration distribution of fractional anomalous diffusion caused by an instantaneous point source. Applied Mathematics and Mechanics (English Edition), 2003, 24, 1302-1308.	3.6	5