Jun-Sheng Duan

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/2867223/publications.pdf
Version: 2024-02-01

Simulation of the eigenvalue problem for tapered rotating beams by the modified decomposition
method. International Journal for Computational Methods in Engineering Science and Mechanics,
2022, 23, 20-28. method. International Journal for Computational Methods in Engineering Science and Mechanics, 2022, 23, 20-28.

2 The Mixed Boundary Value Problems and Chebyshev Collocation Method for Caputo-Type Fractional Ordinary Differential Equations. Fractal and Fractional, 2022, 6, 148.

Approximate Solution of Fractional Differential Equation by Quadratic Splines. Fractal and
Fractional, 2022, 6, 369.

Simultaneous Characterization of Relaxation, Creep, Dissipation, and Hysteresis by Fractional-Order
$4 \begin{array}{ll}\text { Simultaneous Characterization of Relaxation, Creep, Diss } \\ \text { Constitutive Models. Fractal and Fractional, 2021, 5, } 36 .\end{array}$
$3.3 \quad 7$

Vibration Systems with Fractional-Order and Distributed-Order Derivatives Characterizing
Viscoinertia. Fractal and Fractional, 2021, 5, 67.
$3.3 \quad 3$

6 Response analysis of six-parameter fractional constitutive model. Physica Scripta, 2021, 96, 025220.
2.5

4

7 Comparison of Two Different Analytical Forms of Response for Fractional Oscillation Equation.
$7 \quad$ Fractal and Fractional, 2021, 5, 188.

8 Identification of system with distributed-order derivatives. Fractional Calculus and Applied Analysis, 2021, 24, 1619-1628.
2.2

0

> Oscillatory shear flow between two parallel plates for viscoelastic constitutive model of

9 distributed-order derivative. International Journal of Numerical Methods for Heat and Fluid Flow, 2.8 2020, 30, 1137-1148.

10 Calculation of radii and atom numbers of different coordination shells in cubic crystals. Materials Today Communications, 2020, 22, 100768.
1.9

3
11 Matrix Mittag-Leffler function and solution of multi-term fractional differential equations.
International Journal of Dynamical Systems and Differential Equations, 2020, 10, 401.
$0.0 \quad 0$

12 Generalized Path Optimization Problem for a Weighted Digraph over an Additively Idempotent Semiring. Journal of Advances in Applied \& Computational Mathematics, 2020, 7, 25-31.
$0.1 \quad 0$
13 The periodic response of a fractional oscillator with a spring-pot and an inerter-pot. Journal of Mechanics, 2020, 37, 108-117.

Shrinkage Points of Golden Rectangle, Fibonacci Spirals, and Golden Spirals. Discrete Dynamics in
0.9 Nature and Society, 2019, 2019, 1-6.

Vibration Equation of Fractional Order Describing Viscoelasticity and Viscous Inertia. Open Physics, 2019, 17, 850-856.
1.7

Fractional model and solution for the Blackâ€Scholes equation. Mathematical Methods in the Applied Sciences, 2018, 41, 697-704.
2.3

9
16

Stokesâ $€^{\mathrm{TM}}$ second problem of viscoelastic fluids with constitutive equation of distributed-order
derivative. Applied Mathematics and Computation, 2018, 331, 130-139.
2.2

7

System of linear fractional differential equations and the Mittag-Leffler functions with matrix
variable. Journal of Physics: Conference Series, 2018, 1053, 012032.

Solution of Fractional Differential Equation Systems and Computation of Matrix Mittagâ€"Leffler Functions. Symmetry, 2018, 10, 503.

A generalization of the Mittagâ€"Leffler function and solution of system of fractional differential equations. Advances in Difference Equations, 2018, 2018, .

A Generalized Constitutive Equation with Distributed Order Derivative for Viscoelastic SolidA
22 Generalized Constitutive Equation with Distributed Order Derivative for Viscoelastic Solid. International Journal of Materials Mechanics and Manufacturing, 2018, 6, 191-194.

> Higher order numeric solutions of the Laneâe"Emden-type equations derived from the multi-stage modified Adomian decomposition method. International Journal of Computer Mathematics, 2017, 94, 197-215. $24 \quad \begin{aligned} & \text { Mechanical response and simulation for constitutive equations with distributed order derivatives. } \\ & \text { International Journal of Modeling, Simulation, and Scientific Computing, 2017, 08, 1750040. }\end{aligned}$ $25 \quad \begin{aligned} & \text { A comparison study of steady-state vibrations with single fractional-order and distributed-order } \\ & \text { derivatives. Open Physics, 2017, 15, 809-818. }\end{aligned}$

LÃ©vy stable distribution and space-fractional Fokkerâ€"Planck type equation. Journal of King Saud
University - Science, 2016, 28, 17-20.
Exact and approximate analytic solutions of the thin film flow of fourth-grade fluids by the modified
27 Adomian decomposition method. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 2432-2440.

Pull-in instability analyses for NEMS actuators with quartic shape approximation. Applied Mathematics and Mechanics (English Edition), 2016, 37, 303-314.

> An improved model for the cantilever NEMS actuator including the surface energy, fringing field and

Casimir effects. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 75, 202-209.
$2.7 \quad 20$

Solution of Higher-Order, Multipoint, Nonlinear Boundary Value Problems with High-Order
30 Robin-Type Boundary Conditions by the Adomian Decomposition Method. Applied Mathematics and Information Sciences, 2016, 10, 1231-1242.

31 A Modified Fractional Derivative and its Application to Fractional Vibration Equation. Applied Mathematics and Information Sciences, 2016, 10, 1863-1869.

Pull-in parameter analysis for the cantilever NEMS actuator considering fringing field and Casimir effects. , 2015, , .
$0.5 \quad 8$

A detailed analysis for the fundamental solution of fractional vibration equation. Open Mathematics, 2015, 13, .
Solving New Fourthâ€"Order Emdenâ€"Fowler-Type Equations by the Adomian Decomposition Method.
37 International Journal for Computational Methods in Engineering Science and Mechanics, 2015, 16, 121-131.

38 On the Solution of Non-Isothermal Reaction-Diffusion Model Equations in a Spherical Catalyst by the Modified Adomian Method. Chemical Engineering Communications, 2015, 202, 1081-1088.
Solving a class of linear nonlocal boundary value problems using the reproducing kernel. Applied
Mathematics and Computation, 2015, 265, 1098-1105.

$40 \quad$| Steady-state concentrations of carbon dioxide absorbed into phenyl glycidyl ether solutions by the |
| :--- |
| Adomian decomposition method. Journal of Mathematical Chemistry, 2015, 53, 1054-1067. |

The Volterra integral form of the Laneâ€"Emden equation: new derivations and solution by the Adomian decomposition method. Journal of Applied Mathematics and Computing, 2015, 47, 365-379.

```
43 A reliable analysis of oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics.
International Journal of Biomathematics, 2014, 07, 1450020.
```

45	A segmented and weighted Adomian decomposition algorithm for boundary value problem of nonlinear groundwater equation. Mathematical Methods in the Applied Sciences, 2014, 37, 2406-2418.	2.3	6
46	A reliable algorithm for positive solutions of nonlinear boundary value problems by the multistage Adomian decomposition method. Open Engineering, 2014, 5, .	1.6	14
47	Solving coupled Laneâ€"Emden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method. Journal of Mathematical Chemistry, 2014, 52, 255-267.	1.5	95
48	Fractional diffusion-wave equations on finite interval by Laplace transform. Integral Transforms and Special Functions, 2014, 25, 220-229.	1.2	4
49	The zeros of the solutions of the fractional oscillation equation. Fractional Calculus and Applied Analysis, 2014, 17, 10-22.	2.2	14

50 The periodic solution of Stokesâ€ $€^{T M}$ second problem for viscoelastic fluids as characterized by a fractional constitutive equation. Journal of Non-Newtonian Fluid Mechanics, 2014, 205, 11-15.
2.4

12

A study on the systems of the Volterra integral forms of the Laneâ€"Emden equations by the Adomian
decomposition method. Mathematical Methods in the Applied Sciences, 2014, 37, 10-19.
2.3

46

Some Analytical Techniques in Fractional Calculus: Realities and Challenges. Advances in Dynamics,
Patterns, Cognition, 2014, , 35-62.

Parameter effects on shear stress of Johnsonâ€"Segalman fluid in Poiseuille flow. International
Journal of Non-Linear Mechanics, 2013, 55, 140-146.
2.6

3

The modified Adomian decomposition method and the noise terms phenomenon for solving nonlinear weakly-singular Volterra and Fredholm integral equations. Open Engineering, 2013, 3, .

Parametrized temperature distribution and efficiency of convective straight fins with
56 temperature-dependent thermal conductivity by a new modified decomposition method. International
4.8 Journal of Heat and Mass Transfer, 2013, 59, 137-143.
Adomian decomposition method for solving the Volterra integral form of the Laneâ€"Emden equations
57 with initial values and boundary conditions. Applied Mathematics and Computation, 2013, 219,
2.2

5004-5019.
The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations. Computers and Mathematics With Applications, 2013, 66, 728-736.

A new modified Adomian decomposition method and its multistage form for solving nonlinear
61 boundary value problems with Robin boundary conditions. Applied Mathematical Modelling, 2013, 37,
4.2

8687-8708.
Analytic approximation of the blowâ€up time for nonlinear differential equations by the ADMâ€"PadÃ© technique. Mathematical Methods in the Applied Sciences, 2013, 36, 1790-1804.
2.3

6
Eigenvalue problems for fractional ordinary differential equations. Chaos, Solitons and Fractals,
5.1
65 On the Effective Region of Convergence of the Decomposition Series Solution. Journal of Algorithms and Computational Technology, 2013, 7, 227-247.
0.7 13The Periodic Solution of Fractional Oscillation Equation with Periodic Input. Advances in
0.8Higher-order numeric Wazwazâ $€^{\prime E}$ El-Sayed modified Adomian decomposition algorithms. Computers and
Mathematics With Applications, 2012, 63, 1557-1568.2.718
Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the68 Rachâ€"Adomianấ""Meyers modified decomposition method. Applied Mathematics and Computation, 2012,2.243
218, 8370-8392.
69 Computational Mathematics, 2012, 01, .
0.10

Near-field and far-field approximations by the Adomian and asymptotic decomposition methods. Applied

