
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2867180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green product innovation, green dynamic capability, and competitive advantage: Evidence from Chinese manufacturing enterprises. Corporate Social Responsibility and Environmental Management, 2020, 27, 146-165.	8.7	220
2	The implementation and impacts of China's largest payment for ecosystem services program as revealed by longitudinal household data. Land Use Policy, 2014, 40, 45-55.	5.6	138
3	Analyzing the impact of urbanization quality on CO2 emissions: What can geographically weighted regression tell us?. Renewable and Sustainable Energy Reviews, 2019, 104, 127-136.	16.4	91
4	Impact of urbanization on the eco-efficiency of cultivated land utilization: A case study on the Yangtze River Economic Belt, China. Journal of Cleaner Production, 2019, 238, 117916.	9.3	84
5	Water resource management and public preferences for water ecosystem services: A choice experiment approach for inland river basin management. Science of the Total Environment, 2019, 646, 821-831.	8.0	78
6	Ecological restoration programs and payments for ecosystem services as integrated biophysical and socioeconomic processes—China's experience as an example. Ecological Economics, 2012, 73, 56-65.	5.7	67
7	Grassland conservation programs, vegetation rehabilitation and spatial dependency in Inner Mongolia, China. Land Use Policy, 2017, 64, 429-439.	5.6	63
8	Spatiotemporal heterogeneity, convergence and its impact factors: Perspective of carbon emission intensity and carbon emission per capita considering carbon sink effect. Environmental Impact Assessment Review, 2022, 92, 106699.	9.2	58
9	Regional differential decomposition and convergence of rural green development efficiency: evidence from China. Environmental Science and Pollution Research, 2020, 27, 22364-22379.	5.3	50
10	Environmental improvement value of agricultural carbon reduction and its spatiotemporal dynamic evolution: Evidence from China. Science of the Total Environment, 2021, 754, 142170.	8.0	50
11	Tracking sustainable development efficiency with human-environmental system relationship: An application of DPSIR and super efficiency SBM model. Science of the Total Environment, 2021, 783, 146959.	8.0	49
12	Designing and implementing payments for ecosystem services programs: Lessons learned from China's cropland restoration experience. Forest Policy and Economics, 2013, 35, 66-72.	3.4	48
13	Regional difference decomposition and its spatiotemporal dynamic evolution of Chinese agricultural carbon emission: considering carbon sink effect. Environmental Science and Pollution Research, 2021, 28, 38909-38928.	5.3	46
14	Decoupling analysis of water use and economic development in arid region of China – Based on quantity and quality of water use. Science of the Total Environment, 2021, 761, 143275.	8.0	41
15	Does environmental regulation affect CO2 emissions? Analysis based on threshold effect model. Clean Technologies and Environmental Policy, 2019, 21, 565-577.	4.1	40
16	Valuation of ecosystem services using choice experiment with preference heterogeneity: A benefit transfer analysis across inland river basin. Science of the Total Environment, 2019, 679, 126-135.	8.0	39
17	What to Value and How? Ecological Indicator Choices in Stated Preference Valuation. Environmental and Resource Economics, 2013, 56, 3-25.	3.2	32
18	Research on the impact of agricultural green production on farmers' technical efficiency: evidence from China. Environmental Science and Pollution Research, 2021, 28, 38535-38551.	5.3	32

#	Article	IF	CITATIONS
19	Spatial heterogeneity of preferences for improvements in river basin ecosystem services and its validity for benefit transfer. Ecological Indicators, 2018, 93, 627-637.	6.3	31
20	Spatial heterogeneity of ecosystem services: a distance decay approach to quantify willingness to pay for improvements in Heihe River Basin ecosystems. Environmental Science and Pollution Research, 2019, 26, 25247-25261.	5.3	28
21	Public Attitudes, Preferences and Willingness to Pay for River Ecosystem Services. International Journal of Environmental Research and Public Health, 2019, 16, 3707.	2.6	28
22	Ranking of ecosystem services on the basis of willingness to pay: Monetary assessment of a subset of ecosystem services in the Heihe River basin. Science of the Total Environment, 2020, 734, 139447.	8.0	25
23	The spatiotemporal dynamic and spatial spillover effect of agricultural green technological progress in China. Environmental Science and Pollution Research, 2022, 29, 27909-27923.	5.3	24
24	Environmental effect, price subsidy and financial performance: Evidence from Chinese new energy enterprises. Energy Policy, 2021, 149, 112050.	8.8	23
25	Effects of social interactions and information bias on the willingness to pay for transboundary basin ecosystem services. Journal of Environmental Management, 2021, 296, 113233.	7.8	23
26	Spatial Preference Heterogeneity for Integrated River Basin Management: The Case of the Shiyang River Basin, China. Sustainability, 2016, 8, 970.	3.2	21
27	Spatial effect of factors affecting household CO ₂ emissions at the provincial level in China: a geographically weighted regression model. Carbon Management, 2018, 9, 187-200.	2.4	21
28	Role of low-carbon technology innovation in environmental performance of manufacturing: evidence from OECD countries. Environmental Science and Pollution Research, 2021, 28, 68572-68584.	5.3	20
29	Water Poverty in Rural Communities of Arid Areas in China. Water (Switzerland), 2018, 10, 505.	2.7	18
30	Assessing restoration benefit of grassland ecosystem incorporating preference heterogeneity empirical data from Inner Mongolia Autonomous Region. Ecological Indicators, 2020, 117, 106705.	6.3	18
31	Improvisation of indigenous environmental benefit transfer and valuation for cleaner environment: Choice experiment across northwest China. Journal of Cleaner Production, 2020, 274, 123176.	9.3	18
32	Rural Households' Willingness to Accept Compensation Standards for Controlling Agricultural Non-Point Source Pollution: A Case Study of the Qinba Water Source Area in Northwest China. Water (Switzerland), 2019, 11, 1251.	2.7	17
33	Analysis of the influencing factors on CO2 emissions at different urbanization levels: regional difference in China based on panel estimation. Natural Hazards, 2019, 96, 627-645.	3.4	17
34	Spatial prioritization of willingness to pay for ecosystem services. A novel notion of distance from origin's impression. Environmental Science and Pollution Research, 2020, 27, 3100-3112.	5.3	17
35	Ecological degradation of an inland river basin and an evaluation of the spatial and distance effect on willingness to pay for its improvement. Environmental Science and Pollution Research, 2018, 25, 31474-31485.	5.3	16
36	Social interaction effect of rotational grazing and its policy implications for sustainable use of grassland: Evidence from pastoral areas in Inner Mongolia and Gansu, China. Land Use Policy, 2021, 111, 105734.	5.6	16

#	Article	IF	CITATIONS
37	Does Social Support Affect the Health of the Elderly in Rural China? A Meta-Analysis Approach. International Journal of Environmental Research and Public Health, 2019, 16, 3471.	2.6	15
38	How indebted farmers perceive and address financial risk in environmentally degraded areas in Bangladesh. Environmental Science and Pollution Research, 2020, 27, 7439-7452.	5.3	15
39	Dynamic Relationships, Regional Differences, and Driving Mechanisms between Economic Development and Carbon Emissions from the Farming Industry: Empirical Evidence from Rural China. International Journal of Environmental Research and Public Health, 2021, 18, 2257.	2.6	15
40	Application of OECD LSE Framework to Assess Spatial Differences in Rural Green Development in the Arid Shaanxi Province, China. International Journal of Environmental Research and Public Health, 2020, 17, 286.	2.6	14
41	Herders' aversion to wildlife population increases in grassland ecosystem conservation: Evidence from a choice experiment study. Global Ecology and Conservation, 2021, 30, e01777.	2.1	14
42	Multidimensional trust and its impact on the willingness to pay for ecological compensation in China's transboundary watersheds—taking the largest tributary of the Yellow River as an example. Journal of Environmental Planning and Management, 2021, 64, 2257-2275.	4.5	13
43	Synergetic Relationship between Urban and Rural Water Poverty: Evidence from Northwest China. International Journal of Environmental Research and Public Health, 2019, 16, 1647.	2.6	12
44	Suitability evaluation of largeâ€scale farmland transfer on the Loess Plateau of Northern Shaanxi, China. Land Degradation and Development, 2019, 30, 1258-1269.	3.9	12
45	The Drag Effect of Water Resources on China's Regional Economic Growth: Analysis Based on the Temporal and Spatial Dimensions. Water (Switzerland), 2020, 12, 266.	2.7	12
46	Factors affecting industrial land use efficiency in China: analysis from government and land market. Environment, Development and Sustainability, 2021, 23, 10973-10993.	5.0	12
47	Evaluating willingness to pay for the temporal distribution of different air quality improvements: Is China's clean air target adequate to ensure welfare maximization?. Canadian Journal of Agricultural Economics, 2019, 67, 215-232.	2.1	11
48	An insight into the drag effect of water, land, and energy on economic growth across space and time: the application of improved Solow growth model. Environmental Science and Pollution Research, 2022, 29, 6886-6899.	5.3	11
49	Who cares and how much? Narrative for advances in aquatic ecosystem services through non-market valuation with spatial dimensions using a discrete choice experiment. Journal of Cleaner Production, 2022, 337, 130603.	9.3	11
50	Assessing the impact of China's sloping land conversion program on household production efficiency under spatial heterogeneity and output diversification. China Agricultural Economic Review, 2015, 7, 221-239.	3.7	10
51	Residential Environment Induced Preference Heterogeneity for River Ecosystem Service Improvements: A Comparison between Urban and Rural Households in the Wei River Basin, China. Discrete Dynamics in Nature and Society, 2016, 2016, 1-9.	0.9	10
52	A Two-Step Strategy for Developing Cultivated Pastures in China that Offer the Advantages of Ecosystem Services. Sustainability, 2016, 8, 392.	3.2	10
53	Prioritizing stakeholders' preferences for policy scenarios of vulnerable ecosystems with spatial heterogeneity in choice experiment: Coupling stated preferences with elevation. Journal of Environmental Management, 2022, 310, 114757.	7.8	10
54	Exploring the spatial heterogeneity of individual preferences for integrated river basin management: an example of Heihe river basin. Environmental Science and Pollution Research, 2019, 26, 6911-6921.	5.3	9

#	Article	IF	CITATIONS
55	Effect of landscape-scale farmland fragmentation on the ecological efficiency of farmland use: a case study of the Yangtze River Economic Belt, China. Environmental Science and Pollution Research, 2021, 28, 26935-26947.	5.3	9
56	Public Preferences for the Design of a Farmland Retirement Project: Using Choice Experiments in Urban and Rural Areas of Wuwei, China. Sustainability, 2018, 10, 1579.	3.2	8
57	Reformulating China's ecological restoration policies: What can be learned from comparing Chinese and American experiences?. Forest Policy and Economics, 2019, 98, 54-61.	3.4	8
58	Synergistic Effects between Financial Development and Improvements in New-type Urbanization: Evidence from China. Emerging Markets Finance and Trade, 2020, 56, 2055-2072.	3.1	8
59	The Local Residents' Concerns about Environmental Issues in Northwest China. Sustainability, 2016, 8, 226.	3.2	6
60	Do residential localities matter? Revisiting preference heterogeneity and ranking of ecological attributes of an inland river basin. Science of the Total Environment, 2021, 763, 142970.	8.0	6
61	Spatialâ€ŧemporal variations of water poverty in rural China considered through the KDE and ESDA models. Natural Resources Forum, 2018, 42, 254-268.	3.6	5
62	Modelling Farmers' Watershed Ecological Protection Behaviour with the Value-Belief-Norm Theory: A Case Study of the Wei River Basin. International Journal of Environmental Research and Public Health, 2021, 18, 5023.	2.6	5
63	Can grassland rental achieve a win-win situation between livestock production and grassland ecological conservation? Evidence from pastoral areas in Northern China. Journal of Environmental Planning and Management, 2023, 66, 2487-2512.	4.5	3
64	Fluctuations in the Open Economy of China: Evidence from the ABNK Model. Emerging Markets Finance and Trade, 2020, 56, 2073-2092.	3.1	2
65	The Impact of Financial Development on Agricultural Enterprises in Central China Based on Vector Autoregressive Model. Security and Communication Networks, 2022, 2022, 1-16.	1.5	2
66	Evaluating the value of ecological water considering water quality and quantity simultaneously. Water and Environment Journal, 2020, 34, 635-647.	2.2	1
67	Performance Evaluation Model of Agricultural Enterprise Technology Innovation Based on GA-BP Neural Network. Computational Intelligence and Neuroscience, 2022, 2022, 1-8.	1.7	1