David Robert Mole

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2866366/publications.pdf

Version: 2024-02-01

32 papers 3,894 citations

24 h-index

257357

29 g-index

33 all docs 33 docs citations

33 times ranked 5978 citing authors

#	Article	IF	CITATIONS
1	Hypoxia Inducible Factor- $\hat{l}\pm$ Binding and Ubiquitylation by the von Hippel-Lindau Tumor Suppressor Protein. Journal of Biological Chemistry, 2000, 275, 25733-25741.	1.6	945
2	High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood, 2011, 117, e207-e217.	0.6	623
3	Genome-wide Association of Hypoxia-inducible Factor (HIF)-1α and HIF-2α DNA Binding with Expression Profiling of Hypoxia-inducible Transcripts. Journal of Biological Chemistry, 2009, 284, 16767-16775.	1.6	516
4	Hypoxia, Hypoxia-inducible Transcription Factors, and Renal Cancer. European Urology, 2016, 69, 646-657.	0.9	249
5	Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. Nature Genetics, 2012, 44, 420-425.	9.4	148
6	Extensive regulation of the nonâ€coding transcriptome by hypoxia: role of <scp>HIF</scp> in releasing paused <scp>RNA</scp> pol2. EMBO Reports, 2014, 15, 70-76.	2.0	146
7	Inherent <scp>DNA</scp> â€binding specificities of the <scp>HIF</scp> â€1α and <scp>HIF</scp> â€2α transcription factors in chromatin. EMBO Reports, 2019, 20, .	2.0	143
8	Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. Molecular Cancer, 2014, 13, 28.	7.9	135
9	Renal Cell Carcinoma Programmed Death-ligand 1, a New Direct Target of Hypoxia-inducible Factor-2 Alpha, is Regulated by von Hippel–Lindau Gene Mutation Status. European Urology, 2016, 70, 623-632.	0.9	115
10	The SIN3A histone deacetylase complex is required for a complete transcriptional response to hypoxia. Nucleic Acids Research, 2018, 46, 120-133.	6.5	96
11	Tuning the Transcriptional Response to Hypoxia by Inhibiting Hypoxia-inducible Factor (HIF) Prolyl and Asparaginyl Hydroxylases. Journal of Biological Chemistry, 2016, 291, 20661-20673.	1.6	91
12	Pan-genomic binding of hypoxia-inducible transcription factors. Biological Chemistry, 2013, 394, 507-517.	1.2	90
13	Iron Homeostasis and Its Interaction with Prolyl Hydroxylases. Antioxidants and Redox Signaling, 2010, 12, 445-458.	2.5	73
14	Genetic variation at the 8q24.21 renal cancer susceptibility locus affects HIF binding to a MYC enhancer. Nature Communications, 2016, 7, 13183.	5.8	65
15	Capture reveals preformed chromatin interactions between <scp>HIF</scp> â€binding sites and distant promoters. EMBO Reports, 2016, 17, 1410-1421.	2.0	63
16	Heterogeneous Effects of Direct Hypoxia Pathway Activation in Kidney Cancer. PLoS ONE, 2015, 10, e0134645.	1.1	48
17	MITF controls the TCA cycle to modulate the melanoma hypoxia response. Pigment Cell and Melanoma Research, 2019, 32, 792-808.	1.5	41
18	The HIF complex recruits the histone methyltransferase SET1B to activate specific hypoxia-inducible genes. Nature Genetics, 2021, 53, 1022-1035.	9.4	38

#	Article	IF	Citations
19	Hypoxia drives glucose transporter 3 expression through hypoxia-inducible transcription factor (HIF)–mediated induction of the long noncoding RNA NICI. Journal of Biological Chemistry, 2020, 295, 4065-4078.	1.6	34
20	Multiple renal cancer susceptibility polymorphisms modulate the HIF pathway. PLoS Genetics, 2017, 13, e1006872.	1.5	34
21	Genetic Evidence of a Precisely Tuned Dysregulation in the Hypoxia Signaling Pathway during Oncogenesis. Cancer Research, 2014, 74, 6554-6564.	0.4	32
22	Hypoxia inducible factors regulate hepatitis B virus replication by activating the basal core promoter. Journal of Hepatology, 2021, 75, 64-73.	1.8	31
23	Hypoxic Regulation of Gene Transcription and Chromatin: Cause and Effect. International Journal of Molecular Sciences, 2020, 21, 8320.	1.8	29
24	Distal and proximal hypoxia response elements cooperate to regulate organ-specific erythropoietin gene expression. Haematologica, 2020, 105, 2774-2784.	1.7	27
25	Destruction of a distal hypoxia response element abolishestrans-activation of thePAG1gene mediated by HIF-independent chromatin looping. Nucleic Acids Research, 2015, 43, 5810-5823.	6.5	25
26	Hypoxic microenvironment shapes HIV-1 replication and latency. Communications Biology, 2020, 3, 376.	2.0	22
27	Suppression of plasma hepcidin by venesection during steady-state hypoxia. Blood, 2016, 127, 1206-1207.	0.6	15
28	Co-incidence of RCC-susceptibility polymorphisms with HIF cis-acting sequences supports a pathway tuning model of cancer. Scientific Reports, 2019, 9, 18768.	1.6	9
29	Altered regulation of DPF3, a member of the SWI/SNF complexes, underlies the 14q24 renal cancer susceptibility locus. American Journal of Human Genetics, 2021, 108, 1590-1610.	2.6	9
30	HIF Pathways in Clear Cell Renal Cancer. , 0, , .		2
31	Case report of oxalate nephropathy in a patient with pancreatic metastases from renal carcinoma. BMC Cancer, 2019, 19, 967.	1.1	0
32	Abstract LB-239: Studying effects of disease associated polymorphism on a transcriptional pathway: A case study in renal cell cancer. , 2018, , .		0