
Jianxiang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2866363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A ROS-responsive, self-immolative and self-reporting hydrogen sulfide donor with multiple biological activities for the treatment of myocardial infarction. Bioactive Materials, 2022, 9, 168-182.	8.6	24
2	Bioresponsive nanoplatforms for imaging and therapy of cardiovascular diseases. View, 2022, 3, .	2.7	24
3	Hydrogel Transformed from Nanoparticles for Prevention of Tissue Injury and Treatment of Inflammatory Diseases. Advanced Materials, 2022, 34, e2109178.	11.1	39
4	Early diagnosis of breast cancer lung metastasis by nanoprobe-based luminescence imaging of the pre-metastatic niche. Journal of Nanobiotechnology, 2022, 20, 134.	4.2	13
5	Nanoparticleâ€6tabilized Emulsion Bioink for Digital Light Processing Based 3D Bioprinting of Porous Tissue Constructs. Advanced Healthcare Materials, 2022, 11, e2102810.	3.9	12
6	Oral antimicrobial peptide-EGCG nanomedicines for synergistic treatment of ulcerative colitis. Journal of Controlled Release, 2022, 347, 544-560.	4.8	19
7	A novel fluorescent probe for real-time imaging of thionitrous acid under inflammatory and oxidative conditions. Redox Biology, 2022, 54, 102372.	3.9	1
8	Wavelengthâ€Tunable, Long Lifetime, and Biocompatible Luminescent Nanoparticles Based on a Vitamin Eâ€Derived Material for Inflammation and Tumor Imaging. Small, 2021, 17, e2100045.	5.2	13
9	Bioresponsive self-illuminating nanoparticles for luminescence imaging of inflammation and oxidative stress. Nanomedicine, 2021, 16, 1737-1740.	1.7	2
10	Polyphenol-assisted facile assembly of bioactive nanoparticles for targeted therapy of heart diseases. Biomaterials, 2021, 275, 120952.	5.7	25
11	Self-sealing hemostatic and antibacterial needles by polyphenol-assisted surface self-assembly of multifunctional nanoparticles. Chemical Engineering Journal, 2021, 425, 130621.	6.6	8
12	Pulmonary circulation-mediated heart targeting for the prevention of heart failure by inhalation of intrinsically bioactive nanoparticles. Theranostics, 2021, 11, 8550-8569.	4.6	21
13	Targeted Treatment of Ischemic Stroke by Bioactive Nanoparticle-Derived Reactive Oxygen Species Responsive and Inflammation-Resolving Nanotherapies. ACS Nano, 2021, 15, 16076-16094.	7.3	62
14	A pH/ROS dual-responsive and targeting nanotherapy for vascular inflammatory diseases. Biomaterials, 2020, 230, 119605.	5.7	83
15	Biomimetic and bioinspired strategies for oral drug delivery. Biomaterials Science, 2020, 8, 1020-1044.	2.6	32
16	Surface engineering of nanomaterials with phospholipid-polyethylene glycol-derived functional conjugates for molecular imaging and targeted therapy. Biomaterials, 2020, 230, 119646.	5.7	38
17	Bioresponsive drug delivery systems for the treatment of inflammatory diseases. Journal of Controlled Release, 2020, 327, 641-666.	4.8	97
18	Biomimetic and bioresponsive nanotherapies for inflammatory vascular diseases. Nanomedicine, 2020, 15, 1917-1921.	1.7	13

#	Article	IF	CITATIONS
19	A reactive oxygen species-responsive antioxidant nanotherapy for the treatment of drug-induced tissue and organ injury. Biomaterials Science, 2020, 8, 7117-7131.	2.6	9
20	Facile Engineering of Antiâ€Inflammatory Nanotherapies by Hostâ€Guest Selfâ€Assembly. ChemistrySelect, 2020, 5, 8707-8716.	0.7	2
21	Luminescence Imaging of Acute Liver Injury by Biodegradable and Biocompatible Nanoprobes. ACS Nano, 2020, 14, 11083-11099.	7.3	37
22	Amelioration of ulcerative colitis <i>via</i> inflammatory regulation by macrophage-biomimetic nanomedicine. Theranostics, 2020, 10, 10106-10119.	4.6	77
23	Siteâ€Specific MicroRNAâ€33 Antagonism by pHâ€Responsive Nanotherapies for Treatment of Atherosclerosis via Regulating Cholesterol Efflux and Adaptive Immunity. Advanced Functional Materials, 2020, 30, 2002131.	7.8	60
24	Multifunctional Supramolecular Hydrogel for Prevention of Epidural Adhesion after Laminectomy. ACS Nano, 2020, 14, 8202-8219.	7.3	53
25	Hydrogen Peroxide-Activatable Nanoparticles for Luminescence Imaging and <i>In Situ</i> Triggerable Photodynamic Therapy of Cancer. ACS Applied Materials & Interfaces, 2020, 12, 17230-17243.	4.0	53
26	A multifunctional platform with single-NIR-laser-triggered photothermal and NO release for synergistic therapy against multidrug-resistant Gram-negative bacteria and their biofilms. Journal of Nanobiotechnology, 2020, 18, 59.	4.2	35
27	α-Tocopherol preserves cardiac function by reducing oxidative stress and inflammation in ischemia/reperfusion injury. Redox Biology, 2019, 26, 101292.	3.9	138
28	A Proresolving Peptide Nanotherapy for Siteâ€Specific Treatment of Inflammatory Bowel Disease by Regulating Proinflammatory Microenvironment and Gut Microbiota. Advanced Science, 2019, 6, 1900610.	5.6	117
29	Bioinspired and Biomimetic Nanotherapies for the Treatment of Infectious Diseases. Frontiers in Pharmacology, 2019, 10, 751.	1.6	68
30	An Eco- and User-Friendly Herbicide. Journal of Agricultural and Food Chemistry, 2019, 67, 7783-7792.	2.4	21
31	Cyclodextrinâ€Derived Intrinsically Bioactive Nanoparticles for Treatment of Acute and Chronic Inflammatory Diseases. Advanced Materials, 2019, 31, e1904607.	11.1	75
32	Targeted Delivery of Cisplatin-Derived Nanoprecursors via a Biomimetic Yeast Microcapsule for Tumor Therapy by the Oral Route. Theranostics, 2019, 9, 6568-6586.	4.6	35
33	A Multifunctional Nanotherapy for Targeted Treatment of Colon Cancer by Simultaneously Regulating Tumor Microenvironment. Theranostics, 2019, 9, 3732-3753.	4.6	49
34	Supramolecular therapeutics to treat the side effects induced by a depolarizing neuromuscular blocking agent. Theranostics, 2019, 9, 3107-3121.	4.6	38
35	Reply. Journal of the American College of Cardiology, 2019, 73, 1368-1369.	1.2	0
36	A Selfâ€Assembled Fluorescent Nanoprobe for Imaging and Therapy of Cardiac Ischemia/Reperfusion Injury. Advanced Therapeutics, 2019, 2, 1800133.	1.6	21

#	Article	IF	CITATIONS
37	A Synthetic Receptor as a Specific Antidote for Paraquat Poisoning. Theranostics, 2019, 9, 633-645.	4.6	50
38	A self-illuminating nanoparticle for inflammation imaging and cancer therapy. Science Advances, 2019, 5, eaat2953.	4.7	153
39	Advanced emulsions <i>via</i> noncovalent interaction-mediated interfacial self-assembly. Chemical Communications, 2018, 54, 3174-3177.	2.2	3
40	Inhibition of drug-induced seizure development in both zebrafish and mouse models by a synthetic nanoreceptor. Nanoscale, 2018, 10, 10333-10336.	2.8	22
41	Multiscale and Multifunctional Emulsions by Host–Guest Interaction-Mediated Self-Assembly. ACS Central Science, 2018, 4, 600-605.	5.3	25
42	Self-assembly of affinity-controlled nanoparticlesviahost–guest interactions for drug delivery. Nanoscale, 2018, 10, 12364-12377.	2.8	24
43	A Targeting Nanotherapy for AbdominalÂAortic Aneurysms. Journal of the American College of Cardiology, 2018, 72, 2591-2605.	1.2	66
44	Nanoparticles: A Broad-Spectrum ROS-Eliminating Material for Prevention of Inflammation and Drug-Induced Organ Toxicity (Adv. Sci. 10/2018). Advanced Science, 2018, 5, 1870065.	5.6	1
45	A user-friendly herbicide derived from photo-responsive supramolecular vesicles. Nature Communications, 2018, 9, 2967.	5.8	106
46	Targeted Therapy of Atherosclerosis by a Broad-Spectrum Reactive Oxygen Species Scavenging Nanoparticle with Intrinsic Anti-inflammatory Activity. ACS Nano, 2018, 12, 8943-8960.	7.3	230
47	A Broadâ€Spectrum ROSâ€Eliminating Material for Prevention of Inflammation and Drugâ€Induced Organ Toxicity. Advanced Science, 2018, 5, 1800781.	5.6	93
48	A systematic evaluation of the biocompatibility of cucurbit[7]uril in mice. Scientific Reports, 2018, 8, 8819.	1.6	52
49	Yeast Microcapsule-Mediated Targeted Delivery of Diverse Nanoparticles for Imaging and Therapy via the Oral Route. Nano Letters, 2017, 17, 1056-1064.	4.5	101
50	Glutathione-responsive nanoparticles based on a sodium alginate derivative for selective release of doxorubicin in tumor cells. Journal of Materials Chemistry B, 2017, 5, 2337-2346.	2.9	54
51	Yeast capsules for targeted delivery: the future of nanotherapy?. Nanomedicine, 2017, 12, 955-957.	1.7	7
52	A myeloperoxidase-responsive and biodegradable luminescent material for real-time imaging of inflammatory diseases. Materials Today, 2017, 20, 493-500.	8.3	52
53	Structure–Property Correlations of Reactive Oxygen Species-Responsive and Hydrogen Peroxide-Eliminating Materials with Anti-Oxidant and Anti-Inflammatory Activities. Chemistry of Materials, 2017, 29, 8221-8238.	3.2	92
54	pH-Responsive prodrug nanoparticles based on a sodium alginate derivative for selective co-release of doxorubicin and curcumin into tumor cells. Nanoscale, 2017, 9, 12533-12542.	2.8	102

#	Article	IF	CITATIONS
55	Non-proinflammatory and responsive nanoplatforms for targeted treatment of atherosclerosis. Biomaterials, 2017, 143, 93-108.	5.7	98
56	Bioinspired yeast microcapsules loaded with self-assembled nanotherapies for targeted treatment of cardiovascular disease. Materials Today, 2017, 20, 301-313.	8.3	67
57	Compound K Attenuates the Development of Atherosclerosis in ApoEâ^'/â^' Mice via LXRα Activation. International Journal of Molecular Sciences, 2016, 17, 1054.	1.8	34
58	Self-Assembly of pH-Responsive Microspheres for Intestinal Delivery of Diverse Lipophilic Therapeutics. Biomacromolecules, 2016, 17, 2540-2554.	2.6	23
59	Maternal inflammation activated ROS-p38 MAPK predisposes offspring to heart damages caused by isoproterenol via augmenting ROS generation. Scientific Reports, 2016, 6, 30146.	1.6	33
60	Sustained delivery by a cyclodextrin material-based nanocarrier potentiates antiatherosclerotic activity of rapamycin via selectively inhibiting mTORC1 in mice. Journal of Controlled Release, 2016, 235, 48-62.	4.8	39
61	A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials, 2016, 105, 206-221.	5.7	167
62	Nanoparticles responsive to the inflammatory microenvironment for targeted treatment of arterial restenosis. Biomaterials, 2016, 105, 167-184.	5.7	64
63	Facile Assembly of Cost-Effective and Locally Applicable or Injectable Nanohemostats for Hemorrhage Control. ACS Nano, 2016, 10, 9957-9973.	7.3	39
64	Nanomaterial-dependent immunoregulation of dendritic cells and its effects on biological activities of contraceptive nanovaccines. Journal of Controlled Release, 2016, 225, 252-268.	4.8	15
65	Engineering of Biocompatible pH-Responsive Nanovehicles from Acetalated Cyclodextrins as Effective Delivery Systems for Tumor Therapy. Journal of Biomedical Nanotechnology, 2015, 11, 923-941.	0.5	12
66	Drug Delivery: Biocompatible Reactive Oxygen Species (ROS)â€Responsive Nanoparticles as Superior Drug Delivery Vehicles (Adv. Healthcare Mater. 1/2015). Advanced Healthcare Materials, 2015, 4, 168-168.	3.9	5
67	Reversion of multidrug resistance by a pH-responsive cyclodextrin-derived nanomedicine in drug resistant cancer cells. Biomaterials, 2015, 67, 169-182.	5.7	50
68	A facile route to diverse assemblies by host–guest recognition. Polymer Chemistry, 2015, 6, 3716-3727.	1.9	16
69	Enhanced Intracellular Delivery and Tissue Retention of Nanoparticles by Mussel-Inspired Surface Chemistry. Biomacromolecules, 2015, 16, 3574-3583.	2.6	19
70	Multiple noncovalent interactions mediated one-pot therapeutic assemblies for the effective treatment of atherosclerosis. Journal of Materials Chemistry B, 2015, 3, 7355-7365.	2.9	9
71	Biocompatible Reactive Oxygen Species (ROS)â€Responsive Nanoparticles as Superior Drug Delivery Vehicles. Advanced Healthcare Materials, 2015, 4, 69-76.	3.9	107
72	Biomimetic ECM coatings for controlled release of rhBMP-2: construction and biological evaluation. Biomaterials Science, 2014, 2, 980.	2.6	18

#	Article	IF	CITATIONS
73	Facile route to versatile nanoplatforms for drug delivery by one-pot self-assembly. Acta Biomaterialia, 2014, 10, 2630-2642.	4.1	22
74	Inhibition of hypoxia-induced proliferation of pulmonary arterial smooth muscle cells by a mTOR siRNA-loaded cyclodextrin nanovector. Biomaterials, 2014, 35, 4401-4416.	5.7	25
75	The construction of hierarchical structure on Ti substrate with superior osteogenic activity and intrinsic antibacterial capability. Scientific Reports, 2014, 4, 6172.	1.6	54
76	Nanostructured poly(l-lactide) matrix as novel platform for drug delivery. International Journal of Pharmaceutics, 2013, 448, 175-188.	2.6	19
77	Nanocomplexation-assisted solubilization of pDNA in organic solvents for improved microencapsulation. Journal of Colloid and Interface Science, 2013, 394, 573-581.	5.0	6
78	The role of surface chemistry in determining inÂvivo biodistribution and toxicity of CdSe/ZnS core–shell quantum dots. Biomaterials, 2013, 34, 8741-8755.	5.7	131
79	Nanoassemblies from homostructured polypeptides as efficient nanoplatforms for oral drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 408-418.	1.7	3
80	A pH-responsive cyclodextrin-based hybrid nanosystem as a nonviral vector for gene delivery. Biomaterials, 2013, 34, 4159-4172.	5.7	59
81	Cyclodextrin-derived pH-responsive nanoparticles for delivery of paclitaxel. Biomaterials, 2013, 34, 5344-5358.	5.7	136
82	Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective. Advanced Drug Delivery Reviews, 2013, 65, 1215-1233.	6.6	693
83	Polyelectrolyte multilayer coating with two regulatory molecules on titanium: construction and its biological effects. Nanomedicine, 2013, 8, 739-755.	1.7	6
84	Assembled nanomedicines as efficient and safe therapeutics for articular inflammation. International Journal of Pharmaceutics, 2012, 439, 307-316.	2.6	16
85	Stimuli-triggered structural engineering of synthetic and biological polymeric assemblies. Progress in Polymer Science, 2012, 37, 1130-1176.	11.8	82
86	Synthesis of β yclodextrin Containing Copolymer via "Click―Chemistry and Its Selfâ€Assembly in the Presence of Guest Compounds. Macromolecular Rapid Communications, 2012, 33, 664-671.	2.0	9
87	Facile engineering of nano- and microparticles via self-assembly of homopolymers. Soft Matter, 2011, 7, 6264.	1.2	15
88	Facile Engineering of Supramolecular Assemblies from Lipophilic Pharmaceuticals. Crystal Growth and Design, 2011, 11, 899-904.	1.4	13
89	Non-viral Gene Therapy. Fundamental Biomedical Technologies, 2011, , 599-699.	0.2	4
90	Highly efficient nanomedicines assembled via polymer–drug multiple interactions: Tissue-selective delivery carriers. Journal of Controlled Release, 2011, 152, 317-324.	4.8	51

#	Article	IF	CITATIONS
91	Core-shell structured nanoassemblies based on β-cyclodextrin containing block copolymer and poly(β-benzyl l-aspartate) via host-guest complexation. Polymer, 2011, 52, 4928-4937.	1.8	30
92	From the 2-dimensional unstable polyelectrolyte multilayer to the 3-dimensional stable dry polyelectrolyte capsules. Journal of Colloid and Interface Science, 2011, 363, 64-72.	5.0	8
93	Oligoamines conjugated chitosan derivatives: Synthesis, characterization, in vitro and in vivo biocompatibility evaluations. Carbohydrate Polymers, 2011, 83, 1153-1161.	5.1	35
94	Facile Engineering of Biocompatible Materials with pHâ€Modulated Degradability. Advanced Materials, 2011, 23, 3035-3040.	11.1	55
95	Hydrophobic pharmaceuticals mediated self-assembly of β-cyclodextrin containing hydrophilic copolymers: Novel chemical responsive nano-vehicles for drug delivery. Journal of Controlled Release, 2010, 145, 116-123.	4.8	79
96	Host–guest interactions mediated nano-assemblies using cyclodextrin-containing hydrophilic polymers and their biomedical applications. Nano Today, 2010, 5, 337-350.	6.2	126
97	Hostâ^'Guest Interaction Mediated Polymeric Assemblies: Multifunctional Nanoparticles for Drug and Gene Delivery. ACS Nano, 2010, 4, 1049-1059.	7.3	145
98	Spontaneous formation of pH-sensitive, stable vesicles in aqueous solution of N-[4-n-octyloxybenzoyl]-l-histidine. Soft Matter, 2010, 6, 3669.	1.2	23
99	Spontaneous formation of temperature-responsive assemblies by molecular recognition of a β-cyclodextrin-containing block copolymer and poly(N-isopropylacrylamide). Soft Matter, 2010, 6, 610-617.	1.2	34
100	Polymeric Core–Shell Assemblies Mediated by Host–Guest Interactions: Versatile Nanocarriers for Drug Delivery. Angewandte Chemie - International Edition, 2009, 48, 964-968.	7.2	150
101	Morphology modulation of polymeric assemblies by guest drug molecules: TEM study and compatibility evaluation. Polymer, 2009, 50, 1778-1789.	1.8	18
102	A study of properties of "micelle-enhanced―polyelectrolyte capsules: Structure, encapsulation and in vitro release. Acta Biomaterialia, 2009, 5, 2122-2131.	4.1	19
103	Polymeric Nano-Assemblies as Emerging Delivery Carriers for Therapeutic Applications: A Review of Recent Patents. Recent Patents on Nanotechnology, 2009, 3, 225-231.	0.7	31
104	A novel system for water soluble protein encapsulation with high efficiency: "Micelles enhanced― polyelectrolyte capsules. Journal of Biomedical Materials Research - Part A, 2008, 85A, 768-776.	2.1	8
105	Physicochemical characterization, <i>in vitro</i> , and <i>in vivo</i> evaluation of indomethacinâ€loaded nanocarriers selfâ€assembled by amphiphilic polyphosphazene. Journal of Biomedical Materials Research - Part A, 2008, 86A, 914-925.	2.1	21
106	Reverse self-assemblies based on amphiphilic polyphosphazenes for encapsulation of water-soluble molecules. Nanotechnology, 2007, 18, 475602.	1.3	13
107	Hydrogen Bonding-Induced Transformation of Network Aggregates into Vesicles - A Potential Method for the Preparation of Composite Vesicles. Macromolecular Rapid Communications, 2007, 28, 710-717.	2.0	20
108	Versatile Preparation of Fluorescent Particles Based on Polyphosphazenes: From Micro―to Nanoscale. Small, 2007, 3, 2081-2093.	5.2	35

#	Article	IF	CITATIONS
109	Local Delivery of Indomethacin to Arthritis-Bearing Rats through Polymeric Micelles Based on Amphiphilic Polyphosphazenes. Pharmaceutical Research, 2007, 24, 1944-1953.	1.7	55
110	Multimorphological Self-Assemblies of Amphiphilic Graft Polyphosphazenes with Oligopoly(N-isopropylacrylamide) and Ethyl 4-Aminobenzoate as Side Groups. Macromolecules, 2006, 39, 451-455.	2.2	35
111	Controlled nanoparticles formation by self-assembly of novel amphiphilic polyphosphazenes with poly (N-isopropylacrylamide) and ethyl glycinate as side groups. Reactive and Functional Polymers, 2006, 66, 1630-1640.	2.0	15
112	Indomethacin-loaded polymeric nanocarriers based on amphiphilic polyphosphazenes with poly (N-isopropylacrylamide) and ethyl tryptophan as side groups: Preparation, in vitro and in vivo evaluation. Journal of Controlled Release, 2006, 116, 322-329.	4.8	63
113	Thermally responsive polymeric micelles self-assembled by amphiphilic polyphosphazene with poly(N-isopropylacrylamide) and ethyl glycinate as side groups: Polymer synthesis, characterization, andin vitro drug release study. Journal of Biomedical Materials Research - Part A, 2006, 76A, 773-780.	2.1	56
114	Temperature-Triggered Nanosphere Formation Through Self-Assembly of Amphiphilic Polyphosphazene. Macromolecular Chemistry and Physics, 2006, 207, 1289-1296.	1.1	25
115	In vitro and in vivo studies of cyclosporin A-loaded microspheres based on copolymers of lactide and É>-caprolactone: Comparison with conventional PLGA microspheres. International Journal of Pharmaceutics, 2005, 295, 67-76.	2.6	18
116	Thymosin-loaded enteric microspheres for oral administration: Preparation and in vitro release studies. International Journal of Pharmaceutics, 2005, 301, 41-47.	2.6	14
117	Physicochemical characterization of polymeric micelles constructed from novel amphiphilic polyphosphazene with poly(N-isopropylacrylamide) and ethyl 4-aminobenzoate as side groups. Colloids and Surfaces B: Biointerfaces, 2005, 43, 123-130.	2.5	56
118	Thermosensitive self-assembly behaviors of novel amphiphilic polyphosphazenes. Science Bulletin, 2005, 50, 1453.	1.7	5
119	Preparation of bovine serum albumin loaded poly (D, L-lactic-co-glycolic acid) microspheres by a modified phase separation technique. Journal of Microencapsulation, 2005, 22, 117-126.	1.2	14
120	Solvent Controlled Multi-Morphological Self-Assembly of Amphiphilic Graft Copolymers. Macromolecular Rapid Communications, 2005, 26, 1716-1723.	2.0	27
121	Salicylic Acid and PEG-Contained Polyanhydrides: Synthesis, Characterization, and In Vitro Salicylic Acid Release. Drug Delivery, 2005, 12, 97-102.	2.5	10
122	Optimizing double emulsion process to decrease the burst release of protein from biodegradable polymer microspheres. Journal of Microencapsulation, 2005, 22, 413-422.	1.2	27
123	Thermosensitive Micelles Self-Assembled by NovelN-Isopropylacrylamide Oligomer Grafted Polyphosphazene. Macromolecular Rapid Communications, 2004, 25, 1563-1567.	2.0	73
124	An improvement of double emulsion technique for preparing bovine serum albumin-loaded PLGA microspheres. Journal of Microencapsulation, 2004, 21, 775-785.	1.2	29
125	Preparation and in vitro release behaviour of 5-fluorouracil-loaded microspheres based on poly (L-lactide) and its carbonate copolymers. Journal of Microencapsulation, 2003, 20, 731-743.	1.2	29