List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2866355/publications.pdf Version: 2024-02-01

DETED OIIAMRO

#	Article	IF	CITATIONS
1	Distribution and toxigenicity of Aspergillus species isolated from maize kernels from three agro-ecological zones in Nigeria. International Journal of Food Microbiology, 2008, 122, 74-84.	2.1	176
2	Evaluation of atoxigenic isolates of <i>Aspergillus flavus</i> as potential biocontrol agents for aflatoxin in maize. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2008, 25, 1264-1271.	1.1	142
3	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 May 2009–31 July 2009. Molecular Ecology Resources, 2009, 9, 1460-1466.	2.2	128
4	Resurgence of Cucurbit Downy Mildew in the United States: A Watershed Event for Research and Extension. Plant Disease, 2015, 99, 428-441.	0.7	117
5	Epidemiology and Population Biology of <i>Pseudoperonospora cubensis</i> : A Model System for Management of Downy Mildews. Annual Review of Phytopathology, 2015, 53, 223-246.	3.5	84
6	Resurgence of <i>Pseudoperonospora cubensis</i> : The Causal Agent of Cucurbit Downy Mildew. Phytopathology, 2015, 105, 998-1012.	1.1	80
7	Host adaptation to potato and tomato within the US-1 clonal lineage of Phytophthora infestans in Uganda and Kenya. Plant Pathology, 2000, 49, 531-539.	1.2	72
8	Spatiotemporal Spread of Cucurbit Downy Mildew in the Eastern United States. Phytopathology, 2011, 101, 451-461.	1.1	66
9	Environmental distribution and genetic diversity of vegetative compatibility groups determine biocontrol strategies to mitigate aflatoxin contamination of maize by <scp><i>A</i></scp> <i>spergillus flavus</i> . Microbial Biotechnology, 2016, 9, 75-88.	2.0	66
10	Biological and Application-Oriented Factors Influencing Plant Disease Suppression by Biological Control: A Meta-Analytical Review. Phytopathology, 2006, 96, 1168-1174.	1.1	63
11	Evaluation of Maize Inbred Lines for Resistance to Fusarium Ear Rot and Fumonisin Accumulation in Grain in Tropical Africa. Plant Disease, 2007, 91, 279-286.	0.7	58
12	Using Next-Generation Sequencing to Develop Molecular Diagnostics for <i>Pseudoperonospora cubensis</i> , the Cucurbit Downy Mildew Pathogen. Phytopathology, 2016, 106, 1105-1116.	1.1	58
13	Aspergillus Colonization and Aflatoxin Contamination of Maize and Sesame Kernels in Two Agro-ecological Zones in Senegal. Journal of Phytopathology, 2011, 159, 268-275.	0.5	54
14	Applications of Survival Analysis in Botanical Epidemiology. Phytopathology, 2004, 94, 1022-1026.	1.1	53
15	A Quantitative Review of Fungicide Efficacy for Managing Downy Mildew in Cucurbits. Phytopathology, 2010, 100, 1066-1076.	1.1	52
16	Cultural and Genetic Approaches to Manage Aflatoxin Contamination: Recent Insights Provide Opportunities for Improved Control. Phytopathology, 2018, 108, 1024-1037.	1.1	51
17	Comparison of Field, Greenhouse, and Detached-Leaf Evaluations of Soybean Germplasm for Resistance to <i>Phakopsora pachyrhizi</i> . Plant Disease, 2007, 91, 1161-1169.	0.7	47
18	Predicting Pre-planting Risk of Stagonospora nodorum blotch in Winter Wheat Using Machine Learning Models. Frontiers in Plant Science, 2016, 7, 390.	1.7	47

#	Article	IF	CITATIONS
19	Evaluation of Soybean Germplasm for Resistance to Soybean Rust (Phakopsora pachyrhizi) in Nigeria. Plant Disease, 2008, 92, 947-952.	0.7	44
20	Quantitative Models for Germination and Infection of Pseudoperonospora cubensis in Response to Temperature and Duration of Leaf Wetness. Phytopathology, 2010, 100, 959-967.	1.1	42
21	Pathogenic Variation of Phakopsora pachyrhizi Infecting Soybean in Nigeria. Phytopathology, 2009, 99, 353-361.	1.1	36
22	Biocontrol Strains Differentially Shift the Genetic Structure of Indigenous Soil Populations of Aspergillus flavus. Frontiers in Microbiology, 2019, 10, 1738.	1.5	32
23	Trends in Theoretical Plant Epidemiology. European Journal of Plant Pathology, 2006, 115, 61-73.	0.8	31
24	Rapid Screening of Musa Species for Resistance to Black Leaf Streak Using In Vitro Plantlets in Tubes and Detached Leaves. Plant Disease, 2007, 91, 308-314.	0.7	31
25	Cucurbit Downy Mildew ipmPIPE: A Next Generation Web-based Interactive Tool for Disease Management and Extension Outreach. Plant Health Progress, 2011, 12, .	0.8	31
26	Interactive Effects of Temperature and Leaf Wetness Duration on Sporangia Germination and Infection of Cucurbit Hosts by <i>Pseudoperonospora cubensis</i> . Plant Disease, 2012, 96, 345-353.	0.7	31
27	Survival Analysis of Time to Abscission of Blueberry Leaves Affected by Septoria Leaf Spot. Phytopathology, 2005, 95, 108-113.	1.1	30
28	Resurgence of cucurbit downy mildew in the United States: Insights from comparative genomic analysis of <i>Pseudoperonospora cubensis</i> . Ecology and Evolution, 2017, 7, 6231-6246.	0.8	30
29	Resistance to Fluopicolide and Propamocarb and Baseline Sensitivity to Ethaboxam Among Isolates of <i>Pseudoperonospora cubensis</i> From the Eastern United States. Plant Disease, 2018, 102, 1619-1626.	0.7	30
30	Survival of <i>Pseudoperonospora cubensis</i> sporangia exposed to solar radiation. Plant Pathology, 2010, 59, 313-323.	1.2	29
31	Novel Necrotrophic Effectors from <i>Stagonospora nodorum</i> and Corresponding Host Sensitivities in Winter Wheat Germplasm in the Southeastern United States. Phytopathology, 2012, 102, 498-505.	1.1	29
32	Genetic structure and diversity of <i>Phakopsora pachyrhizi</i> isolates from soyabean. Plant Pathology, 2011, 60, 719-729.	1.2	28
33	Dynamics of Soybean Rust Epidemics in Sequential Plantings of Soybean Cultivars in Nigeria. Plant Disease, 2011, 95, 43-50.	0.7	26
34	Novel Sources of Resistance to Fusarium Stalk Rot of Maize in Tropical Africa. Plant Disease, 2008, 92, 772-780.	0.7	25
35	Occurrence and Distribution of Mating Types of <i>Pseudoperonospora cubensis</i> in the United States. Phytopathology, 2017, 107, 313-321.	1.1	25
36	Epidemiology: Past, Present, and Future Impacts on Understanding Disease Dynamics and Improving Plant Disease Management—A Summary of Focus Issue Articles. Phytopathology, 2017, 107, 1092-1094.	1.1	25

#	Article	IF	CITATIONS
37	Virulence Structure Within Populations of <i>Pseudoperonospora cubensis</i> in the United States. Phytopathology, 2017, 107, 777-785.	1.1	22
38	Initial Inoculum and Spatial Dispersal of <i>Colletotrichum gloeosporioides</i> , the Causal Agent of Strawberry Anthracnose Crown Rot. Plant Disease, 2015, 99, 80-86.	0.7	20
39	Spread of Aspergillus flavus and aflatoxin accumulation in postharvested maize treated with biocontrol products. Journal of Stored Products Research, 2019, 84, 101519.	1.2	20
40	Effects of Host Plant Resistance and Fungicides on Severity of Cucumber Downy Mildew. Hortscience: A Publication of the American Society for Hortcultural Science, 2013, 48, 53-59.	0.5	19
41	First Report of <i>Pseudoperonospora cubensis</i> Causing Downy Mildew on <i>Momordica balsamina</i> and <i>M. charantia</i> in North Carolina. Plant Disease, 2014, 98, 1279-1279.	0.7	18
42	Identification and genetic diversity of <i>Mycosphaerella</i> species on banana and plantain in Nigeria. Plant Pathology, 2009, 58, 536-546.	1.2	17
43	Modeling Spatial Frailties in Survival Analysis of Cucurbit Downy Mildew Epidemics. Phytopathology, 2013, 103, 216-227.	1.1	17
44	Relationship between disease severity and escape of <i>Pseudoperonospora cubensis</i> sporangia from a cucumber canopy during downy mildew epidemics. Plant Pathology, 2013, 62, 1366-1377.	1.2	17
45	Septoria Leaf Spot Reduces Flower Bud Set and Yield Potential of Rabbiteye and Southern Highbush Blueberries. Plant Disease, 2006, 90, 51-57.	0.7	16
46	Quantifying the Effects of Wheat Residue on Severity of Stagonospora nodorum Blotch and Yield in Winter Wheat. Phytopathology, 2015, 105, 1417-1426.	1.1	16
47	Dynamics of development of late blight [<i>Phytophthora infestans</i>] in potato, and comparative resistance of cultivars in the highland tropics. Canadian Journal of Plant Pathology, 2006, 28, 84-94.	0.8	14
48	Efficiency of Adaptive Cluster Sampling for Estimating Plant Disease Incidence. Phytopathology, 2010, 100, 663-670.	1.1	14
49	Predicting the risk of cucurbit downy mildew in the eastern United States using an integrated aerobiological model. International Journal of Biometeorology, 2018, 62, 655-668.	1.3	13
50	Field transmission efficiency of Alternaria sesami in sesame from infected seed. Crop Protection, 2003, 22, 1107-1115.	1.0	11
51	Relationship between late blight [<i>Phytophthora infestans</i>] of potato on tuber and foliage, as affected by the disease severity on foliage, cultivar resistance, and atmospheric and soil variables. Canadian Journal of Plant Pathology, 2007, 29, 372-387.	0.8	11
52	Pathogenic variation of <i>Mycosphaerella</i> species infecting banana and plantain in Nigeria. Plant Pathology, 2013, 62, 298-308.	1.2	11
53	Temporal Progress of Septoria Leaf Spot on Rabbiteye Blueberry (Vaccinium ashei). Plant Disease, 2005, 89, 1090-1096.	0.7	10
54	A Degree-Day Model for the Latent Period of Stagonospora nodorum Blotch in Winter Wheat. Plant Disease, 2011, 95, 561-567.	0.7	10

#	Article	IF	CITATIONS
55	Focus expansion and stability of the spread parameter estimate of the power law model for dispersal gradients. PeerJ, 2017, 5, e3465.	0.9	10
56	Field Characterization of Partial Resistance to Gray Leaf Spot in Elite Maize Germplasm. Phytopathology, 2020, 110, 1668-1679.	1.1	8
57	First Report of Rust Caused by <i>Phakopsora pachyrhizi</i> on Soybean in Democratic Republic of Congo. Plant Disease, 2007, 91, 1204-1204.	0.7	8
58	Validation of tuber blight (Phytophthora infestans) prediction model. Crop Protection, 2011, 30, 547-553.	1.0	7
59	A Model for Predicting Onset of Stagonospora nodorum Blotch in Winter Wheat Based on Preplanting and Weather Factors. Phytopathology, 2017, 107, 635-644.	1.1	7
60	Revisiting Graduate Student Training to Address Agricultural and Environmental Societal Challenges. Agricultural and Environmental Letters, 2017, 2, 170019.	0.8	7
61	Characterization of morphological changes within stromata during sexual reproduction in <i>Aspergillus flavus</i> . Mycologia, 2020, 112, 908-920.	0.8	7
62	Efficacy of Hypochlorite in Disinfesting Nonfungal Plant Pathogens in Agricultural and Horticultural Plant Production: A Meta-Analysis. Plant Disease, 2021, 105, 4084-4094.	0.7	7
63	Efficacy of Hypochlorite as a Disinfestant Against Fungal Pathogens in Agricultural and Horticultural Plant Production: A Systematic Review and Meta-Analysis. Phytopathology, 2021, 111, 1369-1379.	1.1	7
64	Trends in theoretical plant epidemiology. , 2006, , 61-73.		7
65	TOLERANCE LEVEL OF ALTERNARIA SESAMI AND THE EFFECT OF SEED INFECTION ON YIELD OF SESAME IN KENYA. Experimental Agriculture, 2000, 36, 335-342.	0.4	5
66	Need for speed: bacterial effector <scp>XopJ2</scp> is associated with increased dispersal velocity of <i>Xanthomonas perforans</i> . Environmental Microbiology, 2021, 23, 5850-5865.	1.8	5
67	Development of Tuber Blight (Phytophthora infestans) on Potato Cultivars Based on In Vitro Assays and Field Evaluations. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 1501-1508.	0.5	5
68	Temporal Dynamics and Severity of Cucurbit Downy Mildew Epidemics as Affected by Chemical Control and Cucurbit Host Type. Plant Disease, 2022, 106, 1009-1019.	0.7	5
69	Optimum Sample Size for Determining Disease Severity and Defoliation Associated with Septoria Leaf Spot of Blueberry. Plant Disease, 2006, 90, 1209-1213.	0.7	4
70	Temporal Dynamics of Septoria Leaf Spot of Blueberry and its Relationship to Defoliation and Yield. Plant Health Progress, 2007, 8, .	0.8	4
71	Use of Quantitative Traits to Assess Aggressiveness of <i>Phakopsora pachyrhizi</i> Isolates from Nigeria and the United States. Plant Disease, 2014, 98, 1261-1266.	0.7	4
72	Evaluation of potato germplasm (Population A & B) for resistance to late blight in Kenya. African Crop Science Journal, 2001, 9, .	0.1	4

#	Article	IF	CITATIONS
73	Development of sexual structures influences metabolomic and transcriptomic profiles in Aspergillus flavus. Fungal Biology, 2022, 126, 187-200.	1.1	4
74	Field Occurrence and Overwintering of Oospores of <i>Pseudoperonospora cubensis</i> in the Southeastern United States. Phytopathology, 2022, 112, 1946-1955.	1.1	4
75	A Systematic Review and Quantitative Synthesis of the Efficacy of Quaternary Ammonium Disinfestants Against Fungal Plant Pathogens. Plant Disease, 2023, 107, 480-492.	0.7	4
76	Evaluation of a Model for Predicting the Infection Risk of Squash and Cantaloupe by <i>Pseudoperonospora cubensis</i> . Plant Disease, 2018, 102, 855-862.	0.7	3
77	"Jumping Jack†Genomic Microsatellites Underscore the Distinctiveness of Closely Related Pseudoperonospora cubensis and Pseudoperonospora humuli and Provide New Insights Into Their Evolutionary Past. Frontiers in Microbiology, 2021, 12, 686759.	1.5	3
78	Optimization of Late Blight and Bacterial Wilt Management in Potato Production Systems in the Highland Tropics of Africa. , 2012, , 509-531.		2
79	Yield stability analysis of promising potato clones in mid and high altitude regions of Kenya. African Crop Science Journal, 1998, 6, .	0.1	2
80	<i>Pseudoperonospora cubensis</i> virulence and pathotype structure in Kazakhstan. Plant Pathology, 2018, 67, 1924-1935.	1.2	1
81	A General Framework for Spatio-Temporal Modeling of Epidemics With Multiple Epicenters: Application to an Aerially Dispersed Plant Pathogen. Frontiers in Applied Mathematics and Statistics, 2021, 7, .	0.7	1
82	Dataset for transcriptomic profiles associated with development of sexual structures in Aspergillus flavus. Data in Brief, 2022, 42, 108033.	0.5	1