
Tim Elliott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2866241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research, 1997, 102, 14991-15019.	3.3	1,204
2	The amount of recycled crust in sources of mantle-derived melts. Science, 2007, 316, 412-7.	6.0	822
3	Origin of Nucleosynthetic Isotope Heterogeneity in the Solar Protoplanetary Disk. Science, 2009, 324, 374-376.	6.0	454
4	Consequences of melt transport for uranium series disequilibrium in young lavas. Earth and Planetary Science Letters, 1993, 118, 1-20.	1.8	290
5	The tungsten isotopic composition of the Earth's mantle before the terminal bombardment. Nature, 2011, 477, 195-198.	13.7	256
6	Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochimica Et Cosmochimica Acta, 2011, 75, 5247-5268.	1.6	252
7	Boron isotopes and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system. Earth and Planetary Science Letters, 2011, 302, 403-413.	1.8	252
8	The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochimica Et Cosmochimica Acta, 2017, 207, 102-138.	1.6	195
9	Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature, 2006, 443, 565-568.	13.7	192
10	The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth and Planetary Science Letters, 2007, 262, 563-580.	1.8	192
11	Tracers of the slab. Geophysical Monograph Series, 2003, , 23-45.	0.1	181
12	Nickel isotope heterogeneity in the early Solar System. Earth and Planetary Science Letters, 2008, 272, 330-338.	1.8	174
13	Precise/ Small Sample Size Determinations of Lithium Isotopic Compositions of Geological Reference Materials and Modern Seawater by MC-ICP-MS. Geostandards and Geoanalytical Research, 2004, 28, 161-172.	2.0	161
14	Hf–W evidence for rapid differentiation of iron meteorite parent bodies. Earth and Planetary Science Letters, 2006, 241, 530-542.	1.8	161
15	Procedures for accurate U and Th isotope measurements by high precision MC-ICPMS. International Journal of Mass Spectrometry, 2007, 264, 97-109.	0.7	161
16	The terrestrial Li isotope cycle: light-weight constraints on mantle convection. Earth and Planetary Science Letters, 2004, 220, 231-245.	1.8	158
17	Lithium inputs to subduction zones. Chemical Geology, 2004, 212, 59-79.	1.4	152
18	Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction. Earth and Planetary Science Letters, 2013, 364, 111-122.	1.8	149

#	Article	IF	CITATIONS
19	The terrestrial uranium isotope cycle. Nature, 2015, 517, 356-359.	13.7	142
20	An Inter‣aboratory Assessment of the Thorium Isotopic Composition of Synthetic and Rock Reference Materials. Geostandards and Geoanalytical Research, 2008, 32, 65-91.	2.0	130
21	Magnesium isotope evidence that accretional vapour loss shapes planetary compositions. Nature, 2017, 549, 511-515.	13.7	129
22	Os isotope systematics of La Palma, Canary Islands: Evidence for recycled crust in the mantle source of HIMU ocean islands. Earth and Planetary Science Letters, 1995, 133, 397-410.	1.8	121
23	Tungsten isotope evidence that mantle plumes contain no contribution from the Earth's core. Nature, 2004, 427, 234-237.	13.7	121
24	Molybdenum mobility and isotopic fractionation during subduction at the Mariana arc. Earth and Planetary Science Letters, 2015, 432, 176-186.	1.8	116
25	Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO3 by MC-ICPMS and NTIMS. Chemical Geology, 2013, 358, 1-14.	1.4	112
26	Molybdenum isotope variations in magmatic rocks. Chemical Geology, 2017, 449, 253-268.	1.4	110
27	Exploring the kappa conundrum: the role of recycling in the lead isotope evolution of the mantle. Earth and Planetary Science Letters, 1999, 169, 129-145.	1.8	107
28	The origin of enriched mantle beneath São Miguel, Azores. Geochimica Et Cosmochimica Acta, 2007, 71, 219-240.	1.6	104
29	Deep water formation in the North Pacific and deglacial CO ₂ rise. Paleoceanography, 2014, 29, 645-667.	3.0	99
30	Confirmation of mass-independent Ni isotopic variability in iron meteorites. Geochimica Et Cosmochimica Acta, 2011, 75, 7906-7925.	1.6	96
31	A core top assessment of proxies for the ocean carbonate system in surfaceâ€dwelling foraminifers. Paleoceanography, 2007, 22, .	3.0	93
32	Fractionation of U and Th during mantle melting: a reprise. Chemical Geology, 1997, 139, 165-183.	1.4	85
33	Lithium and its isotopes as tracers of subduction zone fluids and metasomatic processes: Evidence from the Catalina Schist, California, USA. Geochimica Et Cosmochimica Acta, 2012, 77, 530-545.	1.6	84
34	Continental weathering following a Cryogenian glaciation: Evidence from calcium and magnesium isotopes. Earth and Planetary Science Letters, 2014, 396, 66-77.	1.8	84
35	NEUTRON-POOR NICKEL ISOTOPE ANOMALIES IN METEORITES. Astrophysical Journal, 2012, 758, 59.	1.6	83
36	Lithium Isotope Composition of Basalt Glass Reference Material. Analytical Chemistry, 2005, 77, 5251-5257.	3.2	82

#	Article	IF	CITATIONS
37	COMPOSITIONAL EVOLUTION DURING ROCKY PROTOPLANET ACCRETION. Astrophysical Journal, 2015, 813, 72.	1.6	77
38	The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman Peridotite Massif. Geochimica Et Cosmochimica Acta, 2015, 164, 318-332.	1.6	75
39	Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere. Nature Communications, 2015, 6, 10157.	5.8	72
40	A collisional origin to Earth's non-chondritic composition?. Icarus, 2015, 247, 291-300.	1.1	72
41	The evolution of He Isotopes in the convecting mantle and the preservation of high 3He/4He ratios. Earth and Planetary Science Letters, 2008, 269, 175-185.	1.8	71
42	Tracing subducted black shales in the Lesser Antilles arc using molybdenum isotope ratios. Geology, 2016, 44, 987-990.	2.0	67
43	Lead isotope composition of tree rings as bio-geochemical tracers of heavy metal pollution: a reconnaissance study from Firenze, Italy. Applied Geochemistry, 2000, 15, 891-900.	1.4	66
44	Accurate and precise isotopic measurement of sub-nanogram sized samples of foraminiferal hosted boron by total evaporation NTIMS. Chemical Geology, 2006, 230, 161-174.	1.4	64
45	Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: Insights from the O and Hf isotopic composition of zircon. Geochimica Et Cosmochimica Acta, 2015, 164, 386-402.	1.6	64
46	Molybdenum systematics of subducted crust record reactive fluid flow from underlying slab serpentine dehydration. Nature Communications, 2019, 10, 4773.	5.8	63
47	Collisional stripping of planetary crusts. Earth and Planetary Science Letters, 2018, 484, 276-286.	1.8	56
48	Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling. Earth and Planetary Science Letters, 2009, 278, 286-296.	1.8	55
49	Characterisation of secondary electron multiplier nonlinearity using MC-ICPMS. International Journal of Mass Spectrometry, 2005, 244, 97-108.	0.7	49
50	Crystallization history of rhyolites at Long Valley, California, inferred from combined U-series and Rb-Sr isotope systematics. Geochimica Et Cosmochimica Acta, 2002, 66, 1821-1837.	1.6	47
51	Molybdenum isotope ratios in Izu arc basalts: The control of subduction zone fluids on compositional variations in arc volcanic systems. Geochimica Et Cosmochimica Acta, 2020, 288, 68-82.	1.6	42
52	Temporal variations in the influence of the subducting slab on Central Andean arc magmas: Evidence from boron isotope systematics. Earth and Planetary Science Letters, 2014, 408, 390-401.	1.8	35
53	The Isotope Geochemistry of Ni. Reviews in Mineralogy and Geochemistry, 2017, 82, 511-542.	2.2	35
54	Origin of negative cerium anomalies in subduction-related volcanic samples: Constraints from Ce and Nd isotopes. Chemical Geology, 2018, 500, 46-63.	1.4	34

#	Article	IF	CITATIONS
55	High pressure phase relations of subducted volcaniclastic sediments from the west pacific and their implications for the geochemistry of Mariana arc magmas. Chemical Geology, 2013, 342, 94-109.	1.4	33
56	An experimental study of the behaviour of cerium/molybdenum ratios during subduction: Implications for tracing the slab component in the Lesser Antilles and Mariana Arc. Geochimica Et Cosmochimica Acta, 2017, 212, 133-155.	1.6	32
57	The non-chondritic Ni isotope composition of Earth's mantle. Geochimica Et Cosmochimica Acta, 2020, 268, 405-421.	1.6	32
58	<i>In situ</i> Rb–Sr dating by collision cell, multicollection inductively-coupled plasma mass-spectrometry with pre-cell mass-filter, (CC-MC-ICPMS/MS). Journal of Analytical Atomic Spectrometry, 2021, 36, 917-931.	1.6	32
59	Double-spike inversion for three-isotope systems. Chemical Geology, 2017, 451, 78-89.	1.4	29
60	Carbon fluxes from subducted carbonates revealed by uranium excess at Mount Vesuvius, Italy. Geology, 2018, 46, 259-262.	2.0	27
61	Melt evolution beneath thick lithosphere: a magmatic inclusion study of La Palma, Canary Islands. Chemical Geology, 2002, 183, 169-193.	1.4	26
62	The accuracy of δ11B measurements of foraminifers. Chemical Geology, 2010, 274, 187-195.	1.4	25
63	Thorium isotope evidence for melting of the mafic oceanic crust beneath the Izu arc. Geochimica Et Cosmochimica Acta, 2016, 186, 49-70.	1.6	24
64	Analysis of mass dependent and mass independent selenium isotope variability in black shales. Journal of Analytical Atomic Spectrometry, 2014, 29, 1648-1659.	1.6	23
65	Assessment of USGS BCRâ€⊋ as a Reference Material for Silicate Rock Uâ€Pa Disequilibrium Measurements. Geostandards and Geoanalytical Research, 2008, 32, 55-63.	2.0	22
66	Sr isotopes in arcs revisited: tracking slab dehydration using Î'88/86Sr and 87Sr/86Sr systematics of arc lavas. Geochimica Et Cosmochimica Acta, 2020, 288, 101-119.	1.6	21
67	Primordial formation of major silicates in a protoplanetary disc with homogeneous ²⁶ Al/ ²⁷ Al. Science Advances, 2020, 6, eaay9626.	4.7	21
68	Molybdenum isotope systematics of lavas from the East Pacific Rise: Constraints on the source of enriched mid-ocean ridge basalt. Earth and Planetary Science Letters, 2022, 578, 117283.	1.8	21
69	Melting versus contamination effects on 238U–230Th–226Ra and 235U–231Pa disequilibria in lavas from SA£o Miguel, Azores. Chemical Geology, 2014, 381, 94-109.	1.4	20
70	Uranium isotope fractionation during slab dehydration beneath the Izu arc. Earth and Planetary Science Letters, 2019, 522, 244-254.	1.8	19
71	Bulk chondrite variability in mass independent magnesium isotope compositions – Implications for initial solar system 26Al/27Al and the timing of terrestrial accretion. Earth and Planetary Science Letters, 2019, 522, 166-175.	1.8	17
72	Project Vienna: A Novel Precell Mass Filter for Collision/Reaction Cell MC-ICPMS/MS. Analytical Chemistry, 2021, 93, 10519-10527.	3.2	17

#	Article	IF	CITATIONS
73	The Ca isotope composition of mare basalts as a probe into the heterogeneous lunar mantle. Earth and Planetary Science Letters, 2021, 570, 117079.	1.8	11
74	Measurement of Femtogram Quantities of Protactinium in Silicate Rock Samples by Multicollector Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2008, 80, 344-344.	3.2	10
75	High-Precision Mass-Dependent Molybdenum Isotope Variations in Magmatic Rocks Determined by Double-Spike MC-ICP-MS. Geostandards and Geoanalytical Research, 2015, , n/a-n/a.	1.7	9
76	Molybdenum isotope fractionation between Mo4+ and Mo6+ in silicate liquid and metallic Mo. Chemical Geology, 2019, 504, 177-189.	1.4	9
77	High-Precision Mass-Dependent Molybdenum Isotope Variations in Magmatic Rocks Determined by Double-Spike MC-ICP-MS. Geostandards and Geoanalytical Research, 2016, , n/a-n/a.	1.7	9
78	Chronology of formation of early solar system solids from bulk Mg isotope analyses of CV3 chondrules. Geochimica Et Cosmochimica Acta, 2018, 227, 19-37.	1.6	7
79	Stable tungsten isotope systematics on the Earth's surface. Geochimica Et Cosmochimica Acta, 2022, 322, 227-243.	1.6	7
80	Radiogenic chromium isotope evidence for the earliest planetary volcanism and crust formation in the Solar system. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 515, L39-L44.	1.2	7
81	Global-scale modelling of melting and isotopic evolution of Earth's mantle: melting modules for TERRA. Geoscientific Model Development, 2016, 9, 1399-1411.	1.3	6
82	Hard core constraints on accretion. Nature Geoscience, 2010, 3, 382-383.	5.4	5
83	GEOPHYSICS: Caught Offside. Science, 2002, 295, 55-57.	6.0	4
84	Shadows cast on Moon's origin. Nature, 2013, 504, 90-91.	13.7	4
85	Unleaded high-performance. Nature, 2005, 437, 485-486.	13.7	2
86	12 The Isotope Geochemistry of Ni. , 2017, , 511-542.		1
87	Silicon-enhanced core. Nature, 2007, 447, 1060-1061.	13.7	Ο
88	Restoration of the noble gases. Nature, 2009, 459, 520-521.	13.7	0
89	Galvanized lunacy. Nature, 2012, 490, 346-347.	13.7	Ο
90	Speed metal. Science, 2014, 344, 1086-1087.	6.0	0