Ricardo Brito-Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2865874/publications.pdf

Version: 2024-02-01

933447 996975 15 380 10 15 citations g-index h-index papers 15 15 15 562 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Silk fibroin-magnetic hybrid composite electrospun fibers for tissue engineering applications. Composites Part B: Engineering, 2018, 141, 70-75.	12.0	88
2	Silk Fibroin Separators: A Step Toward Lithium-Ion Batteries with Enhanced Sustainability. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5385-5394.	8.0	50
3	Magnetoelectric response on Terfenol-D/ P(VDF-TrFE) two-phase composites. Composites Part B: Engineering, 2017, 120, 97-102.	12.0	46
4	Recent developments on printed photodetectors for large area and flexible applications. Organic Electronics, 2019, 66, 216-226.	2.6	43
5	Optimized silk fibroin piezoresistive nanocomposites for pressure sensing applications based on natural polymers. Nanoscale Advances, 2019, 1, 2284-2292.	4.6	29
6	Silk fibroin magnetoactive nanocomposite films and membranes for dynamic bone tissue engineering strategies. Materialia, 2020, 12, 100709.	2.7	24
7	Printed multifunctional magnetically activated energy harvester with sensing capabilities. Nano Energy, 2022, 94, 106885.	16.0	22
8	Reconfigurable 3D-printable magnets with improved maximum energy product. Journal of Materials Chemistry C, 2020, 8, 952-958.	5.5	18
9	Tailoring Electrospun Poly(<scp>l</scp> -lactic acid) Nanofibers as Substrates for Microfluidic Applications. ACS Applied Materials & Substrates for Microfluidic Applications. ACS Applied Materials & Substrates for Microfluidic Applications.	8.0	16
10	Multifunctional wax based conductive and piezoresistive nanocomposites for sensing applications. Composites Science and Technology, 2021, 213, 108892.	7.8	11
11	Fluorinated Polymer Membranes as Advanced Substrates for Portable Analytical Systems and Their Proof of Concept for Colorimetric Bioassays. ACS Applied Materials & Interfaces, 2021, 13, 18065-18076.	8.0	9
12	A Facile Nanoimpregnation Method for Preparing Paperâ€Based Sensors and Actuators. Advanced Materials Technologies, 2021, 6, 2100476.	5.8	8
13	Biodegradable polymer-based microfluidic membranes for sustainable point-of-care devices. Chemical Engineering Journal, 2022, 448, 137639.	12.7	7
14	Natural based reusable materials for microfluidic substrates: The silk road towards sustainable portable analytical systems. Applied Materials Today, 2022, 28, 101507.	4.3	6
15	High-dielectric mouldable and printable wax reinforced with ceramic nanofillers and its suitability for capacitive sensing. Flexible and Printed Electronics, 2021, 6, 035005.	2.7	3