List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2865535/publications.pdf Version: 2024-02-01

НимТи

#	Article	IF	CITATIONS
1	Pt-Co nanoparticles supported on hollow multi-shelled CeO2 as a catalyst for highly efficient toluene oxidation: Morphology control and the role of bimetal synergism. Journal of Colloid and Interface Science, 2022, 608, 48-59.	9.4	9
2	Fabrication of an FAPbBr3/g-C3N4 heterojunction to enhance NO removal efficiency under visible-light irradiation. Chemical Engineering Journal, 2022, 430, 132968.	12.7	21
3	Mil-53(Fe)-loaded polyacrylonitrile membrane with superamphiphilicity and double hydrophobicity for effective emulsion separation and photocatalytic dye degradation. Separation and Purification Technology, 2022, 282, 119910.	7.9	37
4	Construction of polymer materials with specific responses to violet and green lights and their potential applications in an artificial visual memory system. Journal of Materials Chemistry C, 2022, 10, 1653-1659.	5.5	4
5	Elucidating the Characteristics of Palladium-Anchored CeO ₂ -Modified Hexagonal Nanosheet Co ₃ O ₄ Catalysts for the Complete Oxidation of Volatile Organic Compounds. Industrial & Engineering Chemistry Research, 2022, 61, 7537-7546.	3.7	6
6	High-Performance and Stable Two-Dimensional MXene-Polyethyleneimine Composite Lamellar Membranes for Molecular Separation. ACS Applied Materials & Interfaces, 2022, 14, 10237-10245.	8.0	26
7	Enhancing the Photodegradation Property of NO through the Construction of a SrTiO ₃ /GQDs/NH ₂ -UiO-66 Heterojunction. Industrial & Engineering Chemistry Research, 2022, 61, 3550-3560.	3.7	6
8	Ultrathin Two-Dimensional BiOCl with Oxygen Vacancies Anchored in Three-Dimensional Porous g-C ₃ N ₄ to Construct a Hierarchical Z-Scheme Heterojunction for the Photocatalytic Degradation of NO. Industrial & Engineering Chemistry Research, 2022, 61, 317-329.	3.7	10
9	Nanomicelles Array for Ultrahighâ€Density Data Storage. Small, 2022, 18, .	10.0	6
10	Overview of electric-field-induced deposition technology in fabricating organic thin films. Journal of Materials Chemistry C, 2021, 9, 374-394.	5.5	22
11	A π-π stacking perylene imide/Bi2WO6 hybrid with dual transfer approach for enhanced photocatalytic degradation. Journal of Colloid and Interface Science, 2021, 582, 1021-1032.	9.4	18
12	Isomerization change and charge trap double mechanisms induced ternary data storage performance. Journal of Materials Chemistry C, 2021, 9, 569-574.	5.5	11
13	Enhanced Photocatalytic Oxidation of Nitric Oxide to MOF-derived Hollow Bimetallic Oxide Microcubes Supported on g-C ₃ N ₄ Nanosheets via p–n Heterojunction. Industrial & Engineering Chemistry Research, 2021, 60, 2921-2930.	3.7	13
14	Toward Highly Robust Nonvolatile Multilevel Memory by Fine Tuning of the Nanostructural Crystalline Solid‧tate Order. Small, 2021, 17, e2100102.	10.0	24
15	Flower-like Pt/Fe ₂ O ₃ –CeO ₂ Catalysts for Highly Efficient Low-Temperature Catalytic Oxidation of Toluene. Industrial & Engineering Chemistry Research, 2021, 60, 5471-5481.	3.7	16
16	Layerâ€byâ€Layer Assembly of Monolayer Films Precisely Controlled by LB Technology to Realize Low Energy Consumption and High Stability Ternary Dataâ€Storage Devices. Chemistry - an Asian Journal, 2021, 16, 3951-3956.	3.3	2
17	Hierarchical <i>Z</i> -scheme g-C ₃ N ₄ /Au/ZnIn ₂ S ₄ photocatalyst for highly enhanced visible-light photocatalytic nitric oxide removal and carbon dioxide conversion. Environmental Science: Nano, 2020, 7, 676-687.	4.3	79
18	Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene. Applied Catalysis B: Environmental, 2020, 265, 118560.	20.2	51

#	Article	IF	CITATIONS
19	Recent progress in the usage of tetrabromo-substituted naphthalenetetracarboxylic dianhydride as a building block to construct organic semiconductors and their applications. Organic Chemistry Frontiers, 2020, 7, 3001-3026.	4.5	22
20	Nanocageâ€Shaped Co _{3â~`} <i>_x</i> Zr <i>_x</i> O ₄ Solidâ€Solution Supports Loaded with Pt Nanoparticles as Effective Catalysts for the Enhancement of Toluene Oxidation. Small, 2020, 16, e2005715.	10.0	10
21	Allâ€Inorganic Ionic Polymerâ€Based Memristor for Highâ€Performance and Flexible Artificial Synapse. Advanced Functional Materials, 2020, 30, 2004245.	14.9	36
22	Modified-MOF-808-Loaded Polyacrylonitrile Membrane for Highly Efficient, Simultaneous Emulsion Separation and Heavy Metal Ion Removal. ACS Applied Materials & Interfaces, 2020, 12, 39227-39235.	8.0	109
23	The incorporation of the ionization effect in organic semiconductors assists in triggering multilevel resistive memory behaviors. Materials Chemistry Frontiers, 2020, 4, 3280-3289.	5.9	13
24	Solvent Vapor Annealing Guides Molecules to Form a Desired Stacking Mode According to the Characteristics of the Molecular Structure. Journal of Physical Chemistry C, 2020, 124, 18868-18876.	3.1	2
25	Fabrication of One-Dimensional Organic Nanofiber Networks <i>via</i> Electrophoretic Deposition for a Nonvolatile Memory Device. ACS Applied Materials & Interfaces, 2020, 12, 57254-57263.	8.0	9
26	Direct Dual Z-Scheme Bi ₂ WO ₆ /GQDs/WO ₃ Inverse Opals for Enhanced Photocatalytic Activities under Visible Light. ACS Sustainable Chemistry and Engineering, 2020, 8, 7921-7927.	6.7	55
27	Recent advances in organicâ€based materials for resistive memory applications. InformaÄnÃ-Materiály, 2020, 2, 995-1033.	17.3	125
28	Z-scheme photocatalytic NO removal on a 2D/2D iodine doped BiOIO3/g-C3N4 under visible-light irradiation. Journal of Colloid and Interface Science, 2020, 576, 426-434.	9.4	39
29	Rh-Doped SrTiO ₃ inverse opal with piezoelectric effect for enhanced visible-light-driven photodegradation of bisphenol A. Environmental Science: Nano, 2020, 7, 2267-2277.	4.3	25
30	Controllable and Versatile Electrophoretic Deposition Technology for Monolithic Organic Memory Devices. ACS Applied Materials & Interfaces, 2020, 12, 15482-15490.	8.0	24
31	Construction of Pd-Modified NiCoO <i>_x</i> Hollow Nanospheres with Surface Hydroxyls and Oxygen Vacancies for Highly Enhanced Catalytic Toluene Oxidation Activity. ACS Sustainable Chemistry and Engineering, 2020, 8, 10581-10587.	6.7	25
32	Solvent Vapor Annealing Upgraded Orderly Intermolecular Stacking and Crystallinity to Enhance Memory Device Performance. Chemistry - an Asian Journal, 2020, 15, 2493-2498.	3.3	4
33	Highly Efficient Catalysts of Bimetallic Pt–Ru Nanocrystals Supported on Ordered ZrO ₂ Nanotube for Toluene Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 13781-13789.	8.0	39
34	Construction of Hierarchical Hollow Co ₉ S ₈ /ZnIn ₂ S ₄ Tubular Heterostructures for Highly Efficient Solar Energy Conversion and Environmental Remediation. Angewandte Chemie - International Edition, 2020, 59, 8255-8261.	13.8	233
35	Electrophoretic Deposition of Salinized Organic Molecules Inducing Desirable Intermolecular Packing Style for Improving Sandwiched Device Electrical Performance. Journal of Physical Chemistry C, 2020, 124, 26249-26257.	3.1	5
36	3D Goldâ€Modified Cerium and Cobalt Oxide Catalyst on a Graphene Aerogel for Highly Efficient Catalytic Formaldehyde Oxidation. Small, 2019, 15, e1804415.	10.0	34

#	Article	IF	CITATIONS
37	Eyeâ€Readable Detection and Oxidation of CO with a Platinumâ€Based Catalyst and a Binuclear Rhodium Complex. Angewandte Chemie, 2019, 131, 12386-12391.	2.0	5
38	Self-Healing Graphene-Reinforced Composite for Highly Efficient Oil/Water Separation. Langmuir, 2019, 35, 13950-13957.	3.5	9
39	Solventâ€Vapor Annealing of Amphiphile/Metal Interface for Orientated Molecular Stacking and Upgraded Resistive Memory Performance. Macromolecular Chemistry and Physics, 2019, 220, 1900334.	2.2	8
40	Highly Robust Organometallic Small-Molecule-Based Nonvolatile Resistive Memory Controlled by a Redox-Gated Switching Mechanism. ACS Applied Materials & Interfaces, 2019, 11, 40332-40338.	8.0	50
41	Platinum‣upported Zirconia Nanotube Arrays Supported on Graphene Aerogels Modified with Metal–Organic Frameworks: Adsorption and Oxidation of Formaldehyde at Room Temperature. Chemistry - A European Journal, 2019, 25, 16718-16724.	3.3	12
42	Rational Modification of Small Molecules with High Device Reproducibility Induced by Improved Interfacial Contact through Intermolecular Hydrogen Bonds. ACS Applied Materials & Interfaces, 2019, 11, 37973-37980.	8.0	4
43	Durable and Robust Self-Healing Superhydrophobic Co-PDMS@ZIF-8-Coated MWCNT Films for Extremely Efficient Emulsion Separation. ACS Applied Materials & Interfaces, 2019, 11, 38313-38320.	8.0	51
44	Durable and Stable MnMoO ₄ -Coated Copper Mesh for Highly Efficient Oil-in-Water Emulsion Separation and Photodegradation of Organic Contaminants. ACS Applied Materials & Interfaces, 2019, 11, 23789-23797.	8.0	48
45	Eyeâ€Readable Detection and Oxidation of CO with a Platinumâ€Based Catalyst and a Binuclear Rhodium Complex. Angewandte Chemie - International Edition, 2019, 58, 12258-12263.	13.8	13
46	Tuning of electron density distribution on molecular conjugated skeleton to improve intermolecular aggregation style and device memory performance. Organic Electronics, 2019, 73, 255-260.	2.6	8
47	Persistent Multiexcitons from Polymers with Pendent Pentacenes. Journal of the American Chemical Society, 2019, 141, 9564-9569.	13.7	31
48	One-dimensional π-d conjugated coordination polymers: synthesis and their improved memory performance. Science China Chemistry, 2019, 62, 753-760.	8.2	23
49	Tuning the Microstructure of Donor/Acceptor Blend Films To Achieve High-Performance Ternary Data-Storage Devices. Journal of Physical Chemistry C, 2019, 123, 12154-12160.	3.1	10
50	One-step in-situ preparation of N-doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation. Applied Catalysis B: Environmental, 2019, 251, 154-161.	20.2	280
51	Robust and durable self-healing superhydrophobic polymer-coated MWCNT film for highly efficient emulsion separation. Environmental Science: Nano, 2019, 6, 1259-1266.	4.3	29
52	Terminal amino monomethylation-triggered intermolecular H- to J-aggregations to realize tunable memory devices. Journal of Materials Chemistry C, 2019, 7, 4863-4869.	5.5	12
53	Controlled deposition of large-area and highly-ordered thin films: effect of dip-coating-induced morphological evolution on resistive memory performance. Journal of Materials Chemistry C, 2019, 7, 3512-3521.	5.5	38
54	Superhydrophobic Metal–Organic Framework Membrane with Self-Repairing for High-Efficiency Oil/Water Emulsion Separation. ACS Sustainable Chemistry and Engineering, 2019, 7, 2709-2717.	6.7	64

#	Article	IF	CITATIONS
55	Hollow Mesoporous Co ₃ O ₄ –CeO ₂ Composite Nanotubes with Open Ends for Efficient Catalytic CO Oxidation. ChemSusChem, 2019, 12, 1084-1090.	6.8	32
56	Morphology-controlled fabrication of CNT@MoS2/SnS2 nanotubes for promoting photocatalytic reduction of aqueous Cr(VI) under visible light. Journal of Alloys and Compounds, 2019, 784, 282-292.	5.5	40
57	Effects of Single Atom N-Substitution in the Molecular Skeleton on Fabricated Film Quality and Memory Device Performance. Crystal Growth and Design, 2018, 18, 1432-1436.	3.0	7
58	Thiadizoloquinoxaline-Based N-Heteroacenes as Active Elements for High-Density Data-Storage Device. ACS Applied Materials & Interfaces, 2018, 10, 15971-15979.	8.0	40
59	Improved Molecular Stacking and Dataâ€Storage Performance of Pyridine―and Pyrimidineâ€Substituted Small Molecules. Advanced Functional Materials, 2018, 28, 1800568.	14.9	26
60	3D Aerogel of Graphitic Carbon Nitride Modified with Perylene Imide and Graphene Oxide for Highly Efficient Nitric Oxide Removal under Visible Light. Small, 2018, 14, e1800416.	10.0	75
61	AgBr-loaded hollow porous carbon nitride with ultrahigh activity as visible light photocatalysts for water remediation. Applied Catalysis B: Environmental, 2018, 229, 155-162.	20.2	40
62	N-Doped and CdSe-Sensitized 3D-Ordered TiO ₂ Inverse Opal Films for Synergistically Enhanced Photocatalytic Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 4000-4007.	6.7	36
63	Recyclable Carbon Nanofibers@Hierarchical I-Doped Bi ₂ O ₂ CO ₃ –MoS ₂ Membranes for Highly Efficient Water Remediation under Visible-Light Irradiation. ACS Sustainable Chemistry and Engineering, 2018, 6, 2676-2683	6.7	29
64	3D ordered MoP inverse opals deposited with CdS quantum dots for enhanced visible light photocatalytic activity. Applied Catalysis B: Environmental, 2018, 238, 255-262.	20.2	54
65	One-Step Synthesis of Honeycomb-Like Carbon Nitride Isotype Heterojunction as Low-Cost, High-Performance Photocatalyst for Removal of NO. ACS Sustainable Chemistry and Engineering, 2018, 6, 11063-11070.	6.7	31
66	Hierarchical Titanium Dioxide Nanowire/Metal–Organic Framework/Carbon Nanofiber Membranes for Highly Efficient Photocatalytic Degradation of Hydrogen Sulfide. Chemistry - A European Journal, 2018, 24, 15019-15025.	3.3	25
67	Nonvolatile Triâ€&tate Resistive Memory Behavior of a Stable Pyreneâ€Fused Nâ€Heteroacene with Ten Linearlyâ€Annulated Rings. Chemistry - A European Journal, 2018, 24, 7845-7851.	3.3	27
68	Deriving highly oriented organic nanofibers and ternary memory performance <i>via</i> salification-induced effects. Chemical Communications, 2018, 54, 10610-10613.	4.1	21
69	Fluorine-Induced Highly Reproducible Resistive Switching Performance: Facile Morphology Control through the Transition between J- and H-Aggregation. ACS Applied Materials & Interfaces, 2017, 9, 9926-9934.	8.0	30
70	Rewritable ternary data storage devices based on polymethacrylate containing pendent azobenzene–naphthalene with the combined effects of conformation change and charge traps. Journal of Materials Chemistry C, 2017, 5, 8593-8598.	5.5	16
71	A novel ternary memory property achieved through rational introduction of end-capping naphthalimide acceptors. Journal of Materials Chemistry C, 2017, 5, 7961-7968.	5.5	26
72	Upgrading Electroresistive Memory from Binary to Ternary Through Singleâ€Atom Substitution in the Molecular Design. Chemistry - an Asian Journal, 2017, 12, 45-51.	3.3	20

#	Article	IF	CITATIONS
73	Improving Memory Performances by Adjusting the Symmetry and Polarity of <i>O</i> â€Fluoroazobenzeneâ€Based Molecules. Chemistry - an Asian Journal, 2016, 11, 512-519.	3.3	9
74	Organic Multilevel Memory Devices of Longâ€∓erm Environmental Stability via Incorporation of Fluorine. Advanced Electronic Materials, 2016, 2, 1500474.	5.1	32
75	Hollow porous carbon nitride immobilized on carbonized nanofibers for highly efficient visible light photocatalytic removal of NO. Nanoscale, 2016, 8, 12066-12072.	5.6	40
76	Flexible Electrospun Carbon Nanofiber/Tin(IV) Sulfide Core/Sheath Membranes for Photocatalytically Treating Chromium(VI)-Containing Wastewater. ACS Applied Materials & Interfaces, 2016, 8, 28671-28677.	8.0	81
77	Micro–Nanocomposites in Environmental Management. Advanced Materials, 2016, 28, 10443-10458.	21.0	131
78	Rational Design of Small Molecules to Implement Organic Quaternary Memory Devices. Advanced Functional Materials, 2016, 26, 146-154.	14.9	102
79	Controlling Crystallite Orientation of Diketopyrrolopyrroleâ€Based Small Molecules in Thin Films for Highly Reproducible Multilevel Memory Device: Role of Furan Substitution. Advanced Functional Materials, 2015, 25, 4246-4254.	14.9	76
80	Multilevel Conductance Switching of a Memory Device Induced by Enhanced Intermolecular Charge Transfer. Advanced Materials, 2015, 27, 5968-5973.	21.0	100
81	Improved ternary memory performance of donor–acceptor structured molecules through cyano substitution. Journal of Materials Chemistry C, 2015, 3, 6778-6785.	5.5	28
82	Effects of gradual oxidation of aromatic sulphur-heterocycle derivatives on multilevel memory data storage performance. Journal of Materials Chemistry C, 2015, 3, 2033-2039.	5.5	44
83	Effect of single atom substitution in benzochalcogendiazole acceptors on the performance of ternary memory devices. Journal of Materials Chemistry C, 2015, 3, 9145-9153.	5.5	40
84	Triggering DRAM/SRAM memory behaviors by single atom substitution to alter the molecular planarity. Journal of Materials Chemistry C, 2015, 3, 8605-8611.	5.5	19
85	Solution-Processed Small Molecule Donor/Acceptor Blends for Electrical Memory Devices with Fine-Tunable Storage Performance. Journal of Physical Chemistry C, 2014, 118, 2154-2160.	3.1	31
86	Adjustment of ON-State Retention Ability Based on New Donor–Acceptor Imides through Structural Tailoring for Volatile Device Applications. ACS Applied Materials & Interfaces, 2014, 6, 94-100.	8.0	27
87	Effect of a π-spacer between a donor and an acceptor on small molecule-based data-storage device performance. Chemical Communications, 2013, 49, 9470.	4.1	44
88	Adjustment of conformation change and charge trapping in ion-doped polymers to achieve ternary memory performance. Journal of Materials Chemistry C, 2013, 1, 7883.	5.5	32
89	Dual-Mechanism-Controlled Ternary Memory Devices Fabricated by Random Copolymers with Pendent Carbazole and Nitro-Azobenzene. Journal of Physical Chemistry C, 2012, 116, 25546-25551.	3.1	36
90	Thermally Stable Ternary Data-Storage Device Based on Twisted Anthraquinone Molecular Design. Journal of Physical Chemistry C, 2012, 116, 22832-22839.	3.1	40

#	Article	IF	CITATIONS
91	Tailoring of Molecular Planarity to Reduce Charge Injection Barrier for Highâ€Performance Smallâ€Moleculeâ€Based Ternary Memory Device with Low Threshold Voltage. Advanced Materials, 2012, 24, 6210-6215.	21.0	131
92	Molecular length adjustment for organic azo-based nonvolatile ternary memory devices. Journal of Materials Chemistry, 2012, 22, 16582.	6.7	61
93	Dynamic Random Access Memory Devices Based on Functionalized Copolymers with Pendant Hydrazine Naphthalimide Group. Journal of Physical Chemistry C, 2011, 115, 8288-8294.	3.1	36
94	Nonlinear optical properties and memory effects of the azo polymers carrying different substituents. Dyes and Pigments, 2011, 88, 18-24.	3.7	42
95	A Small-Molecule-Based Ternary Data-Storage Device. Journal of the American Chemical Society, 2010, 132, 5542-5543.	13.7	183
96	Controllable binary/ternary memory behavior induced by isomerization of phenylhydrazone groups in polymer side chains under ultraviolet light conditions. Journal of Materials Chemistry C, 0, , .	5.5	11