José Rafael RuÃ-z Arrebola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2865479/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of the preparation method on the structural and surface properties of various magnesium oxides and their catalytic activity in the Meerwein–Ponndorf–Verley reaction. Applied Catalysis A: General, 2003, 244, 207-215.	2.2	130
2	Thermal decomposition of Mg/Al and Mg/Ga layered-double hydroxides: a spectroscopic study. Journal of Materials Chemistry, 1999, 9, 1603-1607.	6.7	111
3	The Baeyer–Villiger reaction on heterogeneous catalysts. Tetrahedron, 2008, 64, 2011-2026.	1.0	110
4	Comparative Study of Mg/M(III) (M=Al, Ga, In) Layered Double Hydroxides Obtained by Coprecipitation and the Sol–Gel Method. Journal of Solid State Chemistry, 2002, 168, 156-161.	1.4	105
5	Decomposition Processes and Characterization of the Surface Basicity of Cl-and CO32-Hydrotalcites. Langmuir, 1998, 14, 2086-2091.	1.6	99
6	Influence of the calcination temperature on the nano-structural properties, surface basicity, and catalytic behavior of alumina-supported lanthana samples. Journal of Catalysis, 2010, 272, 121-130.	3.1	81
7	Magnesium-containing mixed oxides as basic catalysts: base characterization by carbon dioxide TPD–MS and test reactions. Journal of Molecular Catalysis A, 2004, 218, 81-90.	4.8	80
8	Epoxidation of limonene over hydrotalcite-like compounds with hydrogen peroxide in the presence of nitriles. Applied Catalysis A: General, 2001, 216, 257-265.	2.2	79
9	Comparative study of Mg/Al and Mg/Ga layered double hydroxides. Microporous and Mesoporous Materials, 1999, 29, 319-328.	2.2	77
10	Study of MgO and Pt/MgO Systems by XRD, TPR, and1H MAS NMR. Langmuir, 1999, 15, 1192-1197.	1.6	67
11	Baeyer–Villiger oxidation of cyclohexanone with hydrogen peroxide/benzonitrile over hydrotalcites as catalysts. Applied Catalysis A: General, 2006, 312, 86-94.	2.2	66
12	Recent Advances in the Heterogeneous Palladium-Catalysed Suzuki Cross-Coupling Reaction. Current Organic Chemistry, 2012, 16, 1128-1150.	0.9	66
13	Catalytic transfer hydrogenation of citral on calcined layered double hydroxides. Applied Catalysis A: General, 2001, 206, 95-101.	2.2	59
14	Fast ultrasound-assisted synthesis of highly crystalline MIL-88A particles and their application as ethylene adsorbents. Ultrasonics Sonochemistry, 2019, 50, 59-66.	3.8	59
15	Activity of Basic Catalysts in the Meerwein–Ponndorf–Verley Reaction of Benzaldehyde with Ethanol. Journal of Colloid and Interface Science, 2001, 238, 385-389.	5.0	57
16	Environmentally friendly Baeyer-Villiger oxidation with H2O2/nitrile over Mg(OH)2 and MgO. Applied Catalysis B: Environmental, 2007, 72, 18-25.	10.8	56
17	Heterogeneous Baeyer–Villiger oxidation of ketones with H2O2/nitrile, using Mg/Al hydrotalcite as catalyst. Tetrahedron, 2007, 63, 1435-1439.	1.0	54
18	Reduction of ketones and aldehydes to alcohols with magnesium–aluminium mixed oxide and 2-propanol. Journal of Molecular Catalysis A, 2006, 246, 190-194.	4.8	49

#	Article	IF	CITATIONS
19	Raman spectroscopy study of edible oils and determination of the oxidative stability at frying temperatures. European Journal of Lipid Science and Technology, 2014, 116, 1451-1456.	1.0	49
20	Liquid-phase heterogeneous catalytic transfer hydrogenation of citral on basic catalysts. Journal of Molecular Catalysis A, 2001, 171, 153-158.	4.8	48
21	Heterogeneous Suzuki cross-coupling reactions over palladium/hydrotalcite catalysts. Journal of Colloid and Interface Science, 2006, 302, 568-575.	5.0	48
22	Use of Raman spectroscopy for analyzing edible vegetable oils. Applied Spectroscopy Reviews, 2016, 51, 417-430.	3.4	48
23	Catalytic hydrogen transfer from 2-propanol to cyclohexanone over basic Mg–Al oxides. Applied Catalysis A: General, 2003, 255, 301-308.	2.2	47
24	Synthesis and textural-structural characterization of magnesia, magnesia–titania and magnesia–zirconia catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 234, 17-25.	2.3	47
25	XRD and Solid-State NMR Study of Magnesium Oxide–Magnesium Orthophosphate Systems. Journal of Solid State Chemistry, 1998, 135, 96-102.	1.4	45
26	Reduction of α,β-unsaturated aldehydes with basic MgO/M2O3 catalysts (M=Al, Ga, In). Applied Catalysis A: General, 2003, 249, 1-9.	2.2	45
27	Hydrotalcites as catalysts for the Baeyer–Villiger oxidation ofÂcyclic ketones with hydrogen peroxide/benzonitrile. Tetrahedron, 2006, 62, 11697-11703.	1.0	45
28	Synthesis, Characterization, and1H and71Ga MAS NMR Spectroscopy of a Novel Mg/Ga Double Layered Hydroxide. Journal of Solid State Chemistry, 1997, 131, 78-83.	1.4	39
29	Palladium supported on hydrotalcite as a catalyst for the Suzuki cross-coupling reaction. Tetrahedron, 2006, 62, 2922-2926.	1.0	39
30	Characterization of Various Magnesium Oxides by XRD and1H MAS NMR Spectroscopy. Journal of Solid State Chemistry, 1999, 144, 25-29.	1.4	38
31	Meerwein–Ponndorf–Verley reaction of acetophenones with 2-propanol over MgAl mixed oxide: The substituent effect. Catalysis Communications, 2007, 8, 1036-1040.	1.6	33
32	α-Arylation of diethyl malonate via enolate with bases in a heterogeneous phase. Tetrahedron Letters, 2002, 43, 2847-2849.	0.7	32
33	Suzuki cross-coupling reactions over Pd(II)-hydrotalcite catalysts in water. Journal of Molecular Catalysis A, 2008, 285, 79-83.	4.8	32
34	Tin-containing hydrotalcite-like compounds as catalysts for the Meerwein–Ponndorf–Verley reaction. Applied Catalysis A: General, 2014, 469, 367-372.	2.2	32
35	Isolation of sterols from sunflower oil deodorizer distillate. Journal of Food Engineering, 2010, 101, 210-213.	2.7	31
36	Raman spectroscopy study of layered-double hydroxides containing magnesium and trivalent metals. Materials Letters, 2014, 120, 193-195.	1.3	31

JOSé RAFAEL RUÃZ ARREBOLA

#	Article	IF	CITATIONS
37	Reduction of heterocyclic carboxaldehydes via Meerwein–Ponndorf–Verley reaction. Applied Catalysis A: General, 2006, 303, 23-28.	2.2	30
38	Delaminated layered double hydroxides as catalysts for the Meerwein–Ponndorf–Verley reaction. Applied Catalysis A: General, 2014, 470, 311-317.	2.2	30
39	Calcium―and ironâ€related phosphorus in calcareous and calcareous marsh soils: Sequential chemical fractionation and 31p nuclear magnetic resonance study. Communications in Soil Science and Plant Analysis, 2000, 31, 2483-2499.	0.6	28
40	Suzuki cross-coupling reaction of fluorobenzene with heterogeneous palladium catalysts. Journal of Fluorine Chemistry, 2006, 127, 443-445.	0.9	28
41	Characterization by XRD, DRIFT, and MAS NMR Spectroscopies of a Mg2P2O7Catalyst. Journal of Colloid and Interface Science, 1998, 202, 456-461.	5.0	27
42	XRD and 1H MAS NMR spectroscopic study of mixed oxides obtained by calcination of layered-double hydroxides. Materials Letters, 2000, 46, 309-314.	1.3	27
43	Suzuki cross-coupling reaction over a palladium–pyridine complex immobilized on hydrotalcite. Catalysis Communications, 2006, 7, 1025-1028.	1.6	27
44	Raman microspectroscopy of hydrotalcite-like compounds modified with sulphate and sulphonate organic anions. Journal of Molecular Structure, 2013, 1034, 38-42.	1.8	26
45	Use of Raman spectroscopy to assess the efficiency of MgAl mixed oxides in removing cyanide from aqueous solutions. Applied Surface Science, 2016, 364, 428-433.	3.1	26
46	Hydrotalcite-supported palladium nanoparticles as catalysts for the Suzuki reaction of aryl halides in water. Applied Catalysis A: General, 2014, 485, 196-201.	2.2	25
47	Aldol Condensation of Furfural with Acetone Over Mg/Al Mixed Oxides. Influence of Water and Synthesis Method. Catalysts, 2019, 9, 203.	1.6	25
48	Raman microspectroscopic analysis of decorative pigments from the Roman villa of El Ruedo (Almedinilla, Spain). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 151, 16-21.	2.0	24
49	Meerwein–Ponndorf–Verley reduction of cycloalkanones over magnesium–aluminium oxide. Perkin Transactions II RSC, 2002, , 1122-1125.	1.1	22
50	Identification by Raman microspectroscopy of pigments in seated statues found in the Torreparedones Roman archaeological site (Baena, Spain). Microchemical Journal, 2017, 130, 191-197.	2.3	22
51	Preparation of Pt/MgO catalysts. Influence of the precursor metal salt and solvent used. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 168, 27-33.	2.3	21
52	Ca/Al Mixed Oxides as Catalysts for the Meerwein–Ponndorf–Verley Reaction. Catalysis Letters, 2010, 136, 192-198.	1.4	21
53	Synthesis and characterization of a novel Mg/In hydrotalcite-like compound. Materials Letters, 2000, 43, 118-121.	1.3	20
54	Near- and mid-infrared spectroscopy study of synthetic hydrocalumites. Solid State Sciences, 2011, 13, 101-105.	1.5	20

#	Article	IF	CITATIONS
55	Tailoring Bifunctional Periodic Mesoporous Organosilicas for Cooperative Catalysis. ACS Applied Nano Materials, 2020, 3, 2373-2382.	2.4	19
56	Suzuki crossâ€coupling reaction of aryl and heterocyclic bromides and aromatic polybromides on a Pd(II)â€hydrotalcite catalyst. Applied Organometallic Chemistry, 2008, 22, 122-127.	1.7	17
57	Zirconium coordination polymers based on tartaric and malic acids as catalysts for cyanosilylation reactions. Applied Catalysis A: General, 2019, 585, 117190.	2.2	17
58	Use of Raman spectroscopy to assess nitrate uptake by calcined LDH phases. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125066.	2.3	17
59	Stable indazol-3-ylio oxides by intramolecular cyclization of N',N'-disubstituted 2-halobenzohydrazides. Tetrahedron Letters, 1988, 29, 697-700.	0.7	15
60	Synthesis of Quaternary Indoxyl Derivatives by Intramolecular Cyclization of Some Substituted Acetophenones. Liebigs Annalen Der Chemie, 1994, 1994, 679-684.	0.8	15
61	Spectroscopic analysis of corrosion products in a bronze cauldron from the Late Iberian Iron Age. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 205, 489-496.	2.0	14
62	Identification of pigments in the Annunciation sculptural group (Cordoba, Spain) by micro-Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 139-145.	2.0	14
63	Synthesis and reactivity of some amino-substituted 1,2,5-thiadiazole 1,1-dioxides. Liebigs Annalen Der Chemie, 1988, 1988, 337-341.	0.8	13
64	Micro-Raman analysis of mortars and wallpaintings in the Roman villa of Fuente Alamo (Puente Genil,) Tj ETQqO 15-23.	0 0 rgBT /(2.0	Overlock 10 T 13
65	Characterization of the Structure and Catalytic Activity of Pt/Sepiolite Catalysts. Journal of Colloid and Interface Science, 2000, 227, 469-475.	5.0	12
66	Use of Raman microspectroscopy to characterize wallpaintings in Cerro de las Cabezas and the Roman villa of Priego de Cordoba (Spain). Vibrational Spectroscopy, 2018, 96, 143-149.	1.2	12
67	MIR and NIR spectroscopy of sol–gel hydrotalcites with various trivalent cations. Journal of Sol-Gel Science and Technology, 2010, 55, 59-65.	1.1	11
68	Near- and mid-infrared spectroscopy of layered double hydroxides containing various di- and tri-valent metals. Journal of Porous Materials, 2013, 20, 351-357.	1.3	11
69	Spectroscopic analysis of pigments in a wall painting from a high Roman Empire building in Córdoba (Spain) and identification of the application technique. Microchemical Journal, 2021, 168, 106444.	2.3	11
70	Reactivity of Cyanogen towards <i>N</i> ‣ubstituted Sulfamides: Synthesis of 1,2,5â€Thiadiazole 1,1â€Dioxide Derivatives. Liebigs Annalen Der Chemie, 1989, 1989, 1135-1137.	0.8	10
71	Microwave-assisted synthesis of hybrid organo-layered double hydroxides containing cholate and deoxycholate. Materials Chemistry and Physics, 2019, 225, 28-33.	2.0	10
72	Copper-complexed dipyridyl-pyridazine functionalized periodic mesoporous organosilica as a heterogeneous catalyst for styrene epoxidation. Dalton Transactions, 2022, 51, 4884-4897.	1.6	10

#	Article	IF	CITATIONS
73	MAS NMR, DRIFT, and FT–Raman Characterization of SiO2–AlPO4–B2O3 Ternary Catalytic Systems. Journal of Colloid and Interface Science, 1999, 217, 186-193.	5.0	8
74	Metal hydroxides as catalysts for the Baeyer-Villiger oxidation of cyclohexanone with hydrogen peroxide. Reaction Kinetics and Catalysis Letters, 2007, 90, 309-313.	0.6	8
75	Vibrational spectroscopic study of sol–gel layered double hydroxides containing different tri- and tetravalent cations. Journal of Sol-Gel Science and Technology, 2015, 76, 614-620.	1.1	8
76	Microwave-assisted synthesis of basic mixed oxides from hydrotalcites. Journal of Porous Materials, 2020, 27, 441-450.	1.3	7
77	Synthesis of (E)-nitroalkenes Catalysed by Ethanolamine Supported on Silica. Catalysis Letters, 2010, 134, 131-137.	1.4	6
78	A multi-analytical study of a wall painting in the Satyr domus in Córdoba, Spain. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 232, 118148.	2.0	6
79	Characterization of macadamia and pecan oils and detection of mixtures with other edible seed oils by Raman spectroscopy. Grasas Y Aceites, 2015, 66, e094.	0.3	6
80	Synthesis and characterization of Pt/MgO catalysts and their use in n-hexane conversion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 225, 137-143.	2.3	5
81	Formation of Stable Nanolayers of Meixnerite via a Combined Delamination-Ion Exchange Process. Journal of Nanoscience and Nanotechnology, 2010, 10, 6562-6566.	0.9	5
82	Microstructural analysis of 3D hierarchical composites of hydrotalcite-coated silica microspheres. Microporous and Mesoporous Materials, 2021, 323, 111247.	2.2	5
83	1H mas NMR study of OH groups in the AlPO4/SiO2 system. Reaction Kinetics and Catalysis Letters, 1998, 65, 207-212.	0.6	4
84	Sepiolite as environmental friendly and reusable catalyst for the selective synthesis of (E)-nitrostyrenes. Reaction Kinetics, Mechanisms and Catalysis, 2010, 99, 303.	0.8	3
85	Near-infrared spectroscopy of palladium-containing layered double hydroxides used as catalysts. Journal of Physics and Chemistry of Solids, 2011, 72, 214-219.	1.9	3
86	Synthesis and characterization of Pd(II) complexes of 2―and 3â€ŧhiophenecarbaldehyde immobilized on silica obtained from sepiolite. Applied Organometallic Chemistry, 2013, 27, 542-545.	1.7	3
87	Characterization of Wallpaintings from the Caliphal Baths of Cordoba (Spain) by X-Ray Diffraction and Raman Microspectroscopy. Analytical Letters, 2019, 52, 411-422.	1.0	3
88	Preparation of graphene-based nanomaterials by pulsed RF discharges on liquid organic compounds. Journal Physics D: Applied Physics, 2020, 53, 435202.	1.3	3
89	Addition of Pyruvatoximes to Exocyclic Double Bonds. Synthetic Communications, 1992, 22, 3263-3269.	1.1	2
90	Selective gas-phase dehydrogenation of cyclohexanol with magnesium orthophosphates. Studies in Surface Science and Catalysis, 1994, 82, 769-776.	1.5	2

#	Article	IF	CITATIONS
91	Addition of oximes to (+) and (â^')-limonene catalyzed by supported palladium. Reaction Kinetics and Catalysis Letters, 1995, 55, 341-347.	0.6	2
92	The surface structure of catalysts activated with hydrogen donors as elucidated by multinuclear solid-state NMR. Solid State Nuclear Magnetic Resonance, 2000, 16, 217-224.	1.5	2
93	Analysis of mortars from the castle keep in Priego de Cordoba (Spain). Vibrational Spectroscopy, 2021, 112, 103184.	1.2	2
94	Surface Characterization of Supported Pd Catalysts Activated with Chiral Hydrogen Donors. Langmuir, 1999, 15, 5183-5187.	1.6	1
95	Oleate Epoxidation in a Confined Matrix of Hydrotalcite. ACS Omega, 2020, 5, 619-625.	1.6	1
96	Multi-analytical identification of a painting workshop at the Roman archaeological site of Bilbilis (Saragossa, Spain). Journal of Archaeological Science: Reports, 2021, 38, 103108.	0.2	1
97	Efficient Removal of Nonylphenol Isomers from Water by Use of Organo-Hydrotalcites. International Journal of Environmental Research and Public Health, 2022, 19, 7214.	1.2	0
98	Three-Dimensional Hierarchical Hydrotalcite–Silica Sphere Composites as Catalysts for Baeyer–Villiger Oxidation Reactions Using Hydrogen Peroxide. Catalysts, 2022, 12, 629.	1.6	0